heusler alloys
Recently Published Documents


TOTAL DOCUMENTS

1763
(FIVE YEARS 477)

H-INDEX

75
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Bensaid Djillali ◽  
Doumi Bendouma ◽  
Sohail Ahmad

Abstract Cobalt -rich Heusler compounds represent a very interesting family among Heusler alloys due to their performance in the field of spintronics and magnetic devices. The quaternary Heusler created by swapping of an anti-atom site by an alkali element improves the performance of physical properties for new applications. In this study, the electronic structures and magnetic properties before and after swapping cobalt (Co) by lithium (Li) in the Co2NbAl compound have been investigated using first-principle computational calculations. Our findings revealed that the swapping Co antisite by Li keeps the half-metallic character in the CoLiNbAl. Analysis of band structures show that ternary Heusler compound is ferromagnetic half-metallic with half metallic gap (band gap in minority channel ) equal 0.134 eV but the swapping Co with Li leads the material to change its behavior and becomes a semiconductor with a gap equal 1.043 eV using HSE06 approach. The results of optical and thermoelectric properties such as absorption coefficient, reflectivity or thermopower and figure of merit are very interesting in the optoelectronic field and encourages the researchers to realize photovoltaic cell and thermoelectric generator with a higher efficiency. These interesting features suggest that Co2NbAl and LiNbAlCo Heusler compounds could be good candidates for applications of antiferromagnetic spintronics and optoelectronics in commercial semiconductor industry.


2022 ◽  
Vol 1213 (1) ◽  
pp. 012006
Author(s):  
M P Kashchenko ◽  
N M Kashchenko ◽  
V G Chashchina

Abstract The dynamic theory of martensitic transformations (MT) considers the formation of habit planes of martensite crystals as a consequence of the propagation of a controlling wave process (CWP). The general ideology makes it possible, by comparing the observed habits with calculations of the elastic fields of defects (as a rule, dislocations), to identify nucleation centers. In a number of cases (In-Tl alloys, Ni50Mn50 alloys, Heusler alloys …) under MT in the shape memory alloys, {110} habits are observed (in the basis of the initial cubic phase), which often have a fine twin structure with twin boundaries of the same type. This highly symmetric structure is described by the CWP containing longitudinal waves (both relatively long-wavelength ℓ and short-wavelength s) propagating along the 4-order symmetry axes. In this paper, it is shown that such habits are associated with rectilinear segments of dislocation loops with directions Λ along <001> and Burgers vectors along <010> (or <110>) orthogonal to Λ, both for sliding and for prismatic loops. The tetragonality, the relative volume change during the MT, and the dependence of the start temperature M s on changes in the concentration of alloy components are also briefly discussed.


2022 ◽  
pp. 1-1
Author(s):  
Olga N. Miroshkina ◽  
Vladimir V. Sokolovskiy ◽  
Vasiliy D. Buchelnikov ◽  
Markus E. Gruner

Author(s):  
E.M. Elsehly ◽  
A. El-Khouly ◽  
Mohamed Asran Hassan ◽  
А.П. Новицкий ◽  
Д.Ю. Карпенков ◽  
...  

This paper presents the results of studying the effect of carbon nanotubes on thermoelectric properties of p-type (Nb0.6Ta0.4)0.8Ti0.2FeSb and n-type Ti0.5Zr0.25Hf0.25NiSn half Heusler alloys. The experimental data obtained indicate a strong effect of the carbon nanotubes on electrical conductivity and Seebeck coefficient of the n-type compound, while the changes in these properties in the p-type compound were significantly less. It is suggested that a possible reason for this difference is the formation of a conducting cluster of carbon nanotubes in the sample of the n-type Heusler alloy.


2022 ◽  
Vol 891 ◽  
pp. 161856
Author(s):  
Gao Wang ◽  
Chunrong Li ◽  
Jindi Feng ◽  
Zhenhua Zhang ◽  
Xiaojuan Yuan ◽  
...  

2022 ◽  
pp. 139328
Author(s):  
M.Y. Raia ◽  
R Masrour ◽  
A Jabar ◽  
A. Rezzouk ◽  
M. Hamedoun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document