electron hole
Recently Published Documents


TOTAL DOCUMENTS

4794
(FIVE YEARS 776)

H-INDEX

110
(FIVE YEARS 19)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Michał Gawełczyk

AbstractWe calculate the spectrum of excited exciton states in application-relevant self-assembled pyramidal quantum dots grown in InAs/InP and InAs/AlGaInAs material systems. These types of dots have been recently shown to combine the emission in the third optical fiber window with low surface density and a reasonable level of in-plane symmetry of emitters, which predestines them for studies on single- and entangled-photon emission and for corresponding applications. The spectrum of optically active excited states is crucial for successful resonant and quasi-resonant excitation of emitters, allowing for conservation of angular momentum and addressing individual selected quantum states. Here, we show that in both types of studied dots, due to their specific morphology of truncated pyramid, the density of excited-state ladder, especially the s–p shell splitting may follow an unconventional dependence on emission energy, opposite to the one typically met in regular quantum dots. We obtain this result via modeling based on available morphological data and calculation within the multi-band $${{\varvec{k}} {\cdot } {\varvec{p}}}$$ k · p envelope-function theory combined with the configuration-interaction method used to calculate exciton states. Then, we explain this observation in purely geometric terms, as a result of an increasing effective quantum confinement width in a pyramid that is progressively cut from the top. Additionally, we show that the inverted trend is also manifested in the amount of electron-hole correlation in the exciton ground state, which also shows an anomalous dependence on emission energy and quantum dot volume.


Nanophotonics ◽  
2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Juan A. Delgado-Notario ◽  
Wojciech Knap ◽  
Vito Clericò ◽  
Juan Salvador-Sánchez ◽  
Jaime Calvo-Gallego ◽  
...  

Abstract Terahertz (THz) waves have revealed a great potential for use in various fields and for a wide range of challenging applications. High-performance detectors are, however, vital for exploitation of THz technology. Graphene plasmonic THz detectors have proven to be promising optoelectronic devices, but improving their performance is still necessary. In this work, an asymmetric-dual-grating-gate graphene-terahertz-field-effect-transistor with a graphite back-gate was fabricated and characterized under illumination of 0.3 THz radiation in the temperature range from 4.5 K up to the room temperature. The device was fabricated as a sub-THz detector using a heterostructure of h-BN/Graphene/h-BN/Graphite to make a transistor with a double asymmetric-grating-top-gate and a continuous graphite back-gate. By biasing the metallic top-gates and the graphite back-gate, abrupt n+n (or p+p) or np (or pn) junctions with different potential barriers are formed along the graphene layer leading to enhancement of the THz rectified signal by about an order of magnitude. The plasmonic rectification for graphene containing np junctions is interpreted as due to the plasmonic electron-hole ratchet mechanism, whereas, for graphene with n+n junctions, rectification is attributed to the differential plasmonic drag effect. This work shows a new way of responsivity enhancement and paves the way towards new record performances of graphene THz nano-photodetectors.


Author(s):  
Juan J. Meléndez ◽  
A. Cantarero

The optical properties of ZrSiS arise from intense excitonic activity, with different character and spatial extension depending on the polarization of the incident light. The system also exhibits plasmonic activity, while the plasmons are unstable and decay into electron–hole pairs.


Author(s):  
Junke Li ◽  
Mei Li ◽  
Hongying Li ◽  
Zhiliang Jin

As a new allotrope of carbon, graphdiyne (GDY) also shows great potential in photocatalysis based on the characteristics of narrow bandgap and high electron-hole mobility. This work synthesized the GDY-CuBr...


2021 ◽  
Author(s):  
Ireneusz Miesiac ◽  
Beata Rukowicz

AbstractThe traditional view of the conductivity of electrolytes is based on the mobility of ions in an electric field. A new concept of water conductivity introduces an electron–hole mechanism known from semiconductor theory. The electrolyte ions in the hydrogen bond network of water imitate the structure of a doped silicon lattice. The source of the current carriers is the electrode reaction generating H+ and OH− ions. The continuity of current flow is provided through the electron–hole mechanism, and the movement of electrolyte ions is only a side process. Bipolar membrane in the semiconductor approach is an electrochemical diode forward biased. Generation of large amounts of H+ and OH− has to be considered as a result of current flow and does not require any increase in the water dissociation rate. Bipolar membranes are essential in electrodialysis stacks for the recovery of acids and bases by salt splitting. Graphic Abstract


2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Asieh Akhoondi ◽  
Ankush Sharma ◽  
Dinesh Pathak ◽  
Mohammad Yusuf ◽  
Taye B. Demissie ◽  
...  

In recent decades, the use of photocatalysts in the evolution of hydrogen (H2) has received much attention. However, the use of the well-known titanium oxide and another photocatalyst as a base for noble metals is limited due to their major weakness in electron-hole pair separation. The use of cocatalysts can be a good way to overcome this problem and provide better performance for the evolution of hydrogen. In this review, suitable high-efficiency cocatalysts for solar hydrogen production have been thoroughly reviewed. New strategies and solutions were examined in terms of increasing the recombination of charge carriers, designing reactive sites, and enhancing the wavelengths of light absorption. Several new types of cocatalysts based on semiconductors in noble groups and dual metals have been evaluated. It is expected that these photocatalysts will be able to reduce the activation energy of reaction and charge separation. In this regard, the existing views and challenges in the field of photocatalysts are presented. The characteristics of monoatomic photocatalysts are reviewed in this manuscript and the latest advances in this field are summarized. Further, the future trends and upcoming research are also briefly discussed. Finally, this review presents noble metal-based photocatalysts for providing suitable photocatalysts on a larger scale and improving their applicability.


Sign in / Sign up

Export Citation Format

Share Document