phonon spectra
Recently Published Documents


TOTAL DOCUMENTS

687
(FIVE YEARS 69)

H-INDEX

48
(FIVE YEARS 4)

2022 ◽  
Vol 105 (1) ◽  
Author(s):  
Y. Huang ◽  
W. Li ◽  
C. Reichhardt ◽  
C. J. O. Reichhardt ◽  
Yan Feng

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 79
Author(s):  
Sergey Vakhrushev ◽  
Alexey Filimonov ◽  
Konstantin Petroukhno ◽  
Andrey Rudskoy ◽  
Stanislav Udovenko ◽  
...  

The question of the microscopic origin of the M-superstructure and additional satellite peaks in the Zr-rich lead zirconate-titanate is discussed for nearly 50 years. Clear contradiction between the selection rules of the critical scattering and the superstructure was found preventing unambiguous attributing of the observed superstructure either to the rotation of the oxygen octahedra or to the antiparallel displacements of the lead cations. Detailed analysis of the satellite pattern explained it as the result of the incommensurate phase transition rather than antiphase domains. Critical dynamics is the key point for the formulated problems. Recently, the oxygen tilt soft mode in the PbZr0.976Ti0.024O3 (PZT2.4) was found. But this does not resolve the extinction rules contradiction. The results of the inelastic X-ray scattering study of the phonon spectra of PZT2.4 around M-point are reported. Strong coupling between the lead and oxygen modes resulting in mode anticrossing and creation of the wide flat part in the lowest phonon dispersion curves is identified. This flat part corresponds to the mixture of the displacements of the lead and oxygen ions and can be an explanation of the extinction rules contradiction. Moreover, a flat dispersion surface is a typical prerequisite for the incommensurate phase transition.


2021 ◽  
Vol 5 (4) ◽  
pp. 229-235
Author(s):  
T. M. Inerbaev ◽  
A. U. Abuova ◽  
A. K. Dauletbekova ◽  
F. U. Abuova ◽  
G. A. Kaptagay ◽  
...  

The magnetic anisotropy energy and the stability of crystal modifications of D03 and L21 of Fe3Ga compounds are studied with the density functional theory methods. The magnetic anisotropy energy of the D03 structure is more than twice the same value for the L21 structure. The features in the electronic structure lead to the difference in the magnitude of spin-orbit interaction, explaining the found effect. The L21 structure is more thermodynamically stable in the entire range of the considered pressures. Under pressure, the considered crystal modifications of Fe3Ga lose their stability due to the appearance of imaginary frequencies in their phonon spectra.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3182
Author(s):  
Xiaohang Lin ◽  
Lin Song ◽  
Anchen Shao ◽  
Minghao Hua ◽  
Xuelei Tian

In the present work, density functional theory (DFT) calculations were applied to confirm that the gold carbide previously experimentally synthesized was AuC film. A crucial finding is that these kinds of AuC films are self-folded on the graphite substrate, leading to the formation of a semi-nanotube structure, which significantly diminishes the error between the experimental and simulated lattice constant. The unique characteristic, the spontaneous archlike reconstruction, makes AuC a possible candidate for self-assembled nanotubes. The band structure indicated, in the designed AuC nanotube, a narrow gap semiconductor with a bandgap of 0.14 eV. Both AIMD (at 300 and 450 K) results and phonon spectra showed a rather high stability for the AuC nanotube because a strong chemical bond formed between the Au–5d and C–2p states. The AuC nanotube could become a novel functional material.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012076
Author(s):  
N.N. Kurus ◽  
A.G. Milekhin ◽  
R.B. Vasiliev ◽  
B.M. Saidzhonov ◽  
K.V. Anikin ◽  
...  

Abstract We report the phonon spectra of core/shell CdSe/CdS nanoplatelets with different shell thicknesses studied using Raman scattering. The nanoplatelets are rectangular colloidal nanocrystals, with thicknesses of core and shell layers of a few nanometers. The Raman spectra show features corresponding to the dominating longitudinal optical (LO) and surface optical (SO) phonon modes of the CdSe core in CdS shell located in the frequency regions of 200-210 and 250-290 cm-1, respectively. As the shell thickness increases, the phonon modes reveal a frequency shift and a change in intensity. The frequency shift associated with a change in the stress state in the core and shell, as well as with confinement effects is discussed. The phonon mode intensities are determined by the thickness of the shell and the proximity to resonant Raman scattering conditions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
R. Ponce-Pérez ◽  
S. J. Gutierrez-Ojeda ◽  
J. Guerrero-Sánchez ◽  
María G. Moreno-Armenta

AbstractIn this work, we demonstrate, through first-principles calculations, the existence of a new family of copper-based MXenes. These add up new structures to the previously reported universe and span the interest of such 2D materials for applications in heterogeneous catalysis, ion-based batteries, sensors, biomedical applications, and so on. First, we propose the MXene-like structures: Cu2N, Cu2C, and Cu2O. Phonon spectra calculations confirmed their dynamical stability by showing just positive frequencies all through the 2D Brillouin zone. The new MXenes family displays metallic characteristics, mainly induced by the Cu-3d orbitals. Bader charge analysis and charge density differences depict bonds with ionic character in which Cu is positively charged, and the non-metal atom gets an anionic character. Also, we investigate the functionalization of the proposed structures with Cl, F, O, and OH groups. Results show that the H3 site is the most favorable for functionalization. In all cases, the non-magnetic nature and metallic properties of the pristine MXenes remain. Our results lay the foundations for the experimental realization of a new MXenes family.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Itaru Ohira ◽  
Jennifer M. Jackson ◽  
Wolfgang Sturhahn ◽  
Gregory J. Finkelstein ◽  
Takaaki Kawazoe ◽  
...  

AbstractThe high-pressure phases of oxyhydroxides (δ-AlOOH, ε-FeOOH, and their solid solution), candidate components of subducted slabs, have wide stability fields, thus potentially influencing volatile circulation and dynamics in the Earth’s lower mantle. Here, we report the elastic wave velocities of δ-(Al,Fe)OOH (Fe/(Al + Fe) = 0.13, δ-Fe13) to 79 GPa, determined by nuclear resonant inelastic X-ray scattering. At pressures below 20 GPa, a softening of the phonon spectra is observed. With increasing pressure up to the Fe3+ spin crossover (~ 45 GPa), the Debye sound velocity (vD) increases. At higher pressures, the low spin δ-Fe13 is characterized by a pressure-invariant vD. Using the equation of state for the same sample, the shear-, compressional-, and bulk-velocities (vS, vP, and vΦ) are calculated and extrapolated to deep mantle conditions. The obtained velocity data show that δ-(Al,Fe)OOH may cause low-vΦ and low-vP anomalies in the shallow lower mantle. At deeper depths, we find that this hydrous phase reproduces the anti-correlation between vS and vΦ reported for the large low seismic velocity provinces, thus serving as a potential seismic signature of hydrous circulation in the lower mantle.


Author(s):  
Jia Fu ◽  
Xing Liu

The lattice vibration and thermal properties of CdS by first-principles calculations based on density functional theory are especially investigated. The results of phonon spectra show that CdS is thermodynamically stable. Combined with the concept of irreducible representation, the contribution of atoms in CdS to Raman and infrared is analyzed, that is: A1 and E1 participate in Raman vibration, and A1, E1 and E2 participate in infrared vibration. The electronic band structure and optical properties such as dielectric constant, refractive index, reflectivity are determined theoretically using DFT method. The thermal properties of CdS show that Debye temperature, isochoric specific heat capacity and coefficient of thermal expansion increase with the increase of temperature, and then tend to equilibrium. The equilibrium values are 353.13 K, 23.86 cal/cell.K and 1.04×10-4 K-1, respectively. For comparison. piezoelectric semiconductor material CdS power is synthesized by microwave hydrothermal process (temperature at 140°C + time about 15min), with particle size ranges from 50nm to 1000nm. The HRTEM imagine of CdS are experimentally studied to understand the crystal structure, with the growth preference along the plane (1000) and nanocrystal distance of 6.76 Å. This study is of great significance and provides theoretical guidance for further designing CdS matrix composite materials and to improve photoanode performance through doping of CdS and quantum dots co-sensitization.


Author(s):  
Ivan Nebola ◽  
Anton Katanytsia ◽  
Viktor Studenyak ◽  
Yurii Pal ◽  
Aleksyna Shteyfan ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document