Electrical and Structural Properties of Amorphous Metal—Metal-Oxide Systems

1973 ◽  
Vol 7 (9) ◽  
pp. 4099-4111 ◽  
Author(s):  
J. J. Hauser
1991 ◽  
Vol 238 ◽  
Author(s):  
W. Mader

ABSTRACTRecent work is reviewed on the structure of metal/metal oxide interfaces in model systems with well defined orientation relationships and boundary inclination. Structural relaxations established upon interface formation may be described as misfit dislocations which can be investigated using conventional and high resolution TEM. The conditions for obtaining informations at an atomistic scale using HRTEM are critically discussed. Specifically, geometrical restrictions are found to be critical in HRTEM study of {111} interfaces in fee metal -fee oxide systems. Different misfit dislocation networks at {100} interfaces in fee metal - fee oxide systems were observed which may be correlated to the relative strength of metal-anion and metal-cation bonds at the interface. In strongly interacting systems misfit dislocations can possess an equilibrium stand-off distance from the interface. In the system Nb-Al2O3 the interface is shown to be coherent by the registry of atomic columns adjacent to the interface. In this configuration energy is minimized by unbroken strong interfacial bonds and misfit localization in the elastically softer metal.


1992 ◽  
Vol 139 (4) ◽  
pp. 1130-1134 ◽  
Author(s):  
P. A. van Manen ◽  
R. Weewer ◽  
J. H. W. de Wit

1990 ◽  
Vol 5 (9) ◽  
pp. 1995-2003 ◽  
Author(s):  
Y. Gao ◽  
Karl L. Merkle

The atomic structures of heterophase interfaces with large misfits (>14% in Ag/Ni and Au/Ni) and with small misfits (∼2% in Ag/NiO and Au/NiO) have been studied by high-resolution electron microscopy (HREM). It is found that all interfaces are strongly faceted on (111) planes. This indicates that (111) interfaces have the lowest interfacial energy in both metal/metal and metal/metal-oxide systems. For the metal interfaces, this also agrees with determinations of interfacial energies by lattice statics calculations. The large misfit of Ag/Ni and Au/Ni interfaces is accommodated by misfit dislocations. Observations of misfit localization by HREM are in good agreement with images derived from computer simulation, based on relaxed structures, obtained in embedded atom calculations. All misfit dislocations at the Ag/Ni and Au/Ni interfaces lie exactly in the plane of the interfaces, while the dislocations at Ag/NiO and Au/NiO interfaces reside at a stand-off distance, 3 to 4 (111)Ag or (111)Au interplanar spacings from the interfaces.


Nature ◽  
1979 ◽  
Vol 277 (5694) ◽  
pp. 291-292 ◽  
Author(s):  
J. N. BRADLEY ◽  
W. D. CAPEY ◽  
J. F. SHERE

Sign in / Sign up

Export Citation Format

Share Document