high resolution tem
Recently Published Documents


TOTAL DOCUMENTS

622
(FIVE YEARS 57)

H-INDEX

32
(FIVE YEARS 2)

Author(s):  
Osamu Ueda ◽  
Makoto Kasu ◽  
Hirotaka Yamaguchi

Abstract This paper reviews the status of characterization of defects in β-Ga2O3 crystals grown by edge-defined film-fed growth and hydride vapor phase epitaxy using chemical etching, scanning electron microscopy, focused ion beam scanning ion microscopy, X-ray topography (XRT), and transmission electron microscopy (TEM). The observed defects are classified into four types: dislocations, stacking faults (SFs), twins, and plate-like nanovoids (PNVs). First, we present the detailed characterization of dislocations in the crystal by chemical etching, XRT, and TEM, and discuss possible slip systems. Next, we describe XRT analyses of two types of SFs: SFs 1 lying on the (2 ̅01) plane and SFs 2 on the (111) and (11 ̅1) planes. We describe the results for twins found in crystals via high-resolution TEM and electron diffraction analysis, and PNVs corresponding to etch pits on the (010) plane. Finally, we discuss possible generation mechanisms of the defects and their influence on device characteristics.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 182
Author(s):  
Salvatore E. Panasci ◽  
Antal Koos ◽  
Emanuela Schilirò ◽  
Salvatore Di Franco ◽  
Giuseppe Greco ◽  
...  

In this paper, we report a multiscale investigation of the compositional, morphological, structural, electrical, and optical emission properties of 2H-MoS2 obtained by sulfurization at 800 °C of very thin MoO3 films (with thickness ranging from ~2.8 nm to ~4.2 nm) on a SiO2/Si substrate. XPS analyses confirmed that the sulfurization was very effective in the reduction of the oxide to MoS2, with only a small percentage of residual MoO3 present in the final film. High-resolution TEM/STEM analyses revealed the formation of few (i.e., 2–3 layers) of MoS2 nearly aligned with the SiO2 surface in the case of the thinnest (~2.8 nm) MoO3 film, whereas multilayers of MoS2 partially standing up with respect to the substrate were observed for the ~4.2 nm one. Such different configurations indicate the prevalence of different mechanisms (i.e., vapour-solid surface reaction or S diffusion within the film) as a function of the thickness. The uniform thickness distribution of the few-layer and multilayer MoS2 was confirmed by Raman mapping. Furthermore, the correlative plot of the characteristic A1g-E2g Raman modes revealed a compressive strain (ε ≈ −0.78 ± 0.18%) and the coexistence of n- and p-type doped areas in the few-layer MoS2 on SiO2, where the p-type doping is probably due to the presence of residual MoO3. Nanoscale resolution current mapping by C-AFM showed local inhomogeneities in the conductivity of the few-layer MoS2, which are well correlated to the lateral changes in the strain detected by Raman. Finally, characteristic spectroscopic signatures of the defects/disorder in MoS2 films produced by sulfurization were identified by a comparative analysis of Raman and photoluminescence (PL) spectra with CVD grown MoS2 flakes.


2021 ◽  
Vol 17 (12) ◽  
pp. 2485-2494
Author(s):  
Hui Kong ◽  
Yusheng Zhao ◽  
Peng Cao ◽  
Juan Luo ◽  
Yuhan Liu ◽  
...  

Chinese medicine is a treasure of the Chinese nation, and charcoal drugs are a class of medicine with distinctive characteristics. Scutellariae Radix Carbonisata (SRC) could be a sort of calcined herb medicate that has been utilized in traditional Chinese medicine (TCM) clinics to treat hypersensitivities. However, to date, the function of the carbonized part and action mechanisms of SRCs have not been elucidated. In this study, novel water-soluble carbon dots (CDs, named SRC-CDs) ranging from 2 to 9 nm were observed and separated from aqueous extracts of SRC. These SRC-CDs were characterized using transmission electron microscopy (TEM) and high-resolution TEM, as well as Fourier transform infrared, ultraviolet-visible, and fluorescence spectroscopy, to determine particle size, morphology, chemical structure, and optical properties. Then, the in vitro antiallergic efficacy of the SRC-CDs was studied in a C48/80-induced RBL-2H3 cell model, in which remarkable antiallergic effects were revealed. These results will provide new solution directions and technical methods for follow-up research of charcoal drugs and new understanding of potential biomedical applications of CDs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3174
Author(s):  
Beibei Yang ◽  
Tian Qin ◽  
Ziping Bao ◽  
Wenqian Lu ◽  
Jiayu Dong ◽  
...  

It is well-known that platinum (Pt) is still the preferred material of anode catalyst in ethanol oxidation, however, the prohibitive high cost and CO poisoning of Pt metal impede the commercialization of fuel cells. Therefore, improving the utilization rate of catalysts and reduce the cost of catalyst become one of the most concerned focus in the construction of fuel cells. In this work, the Pt-based catalysts are synthesized by using different content of sodium dodecyl sulfate (SDS) modified-Ti3C2Tx support, and the dispersion regulation function of SDS modified-Ti3C2Tx supported on Pt nanoparticles is investigated. The structure, composition and morphology of different catalysts are characterized by X-ray diffraction (XRD), X-ray spectroscopy (EDX), transmission electron microscopy (TEM) and high-resolution TEM, respectively. It is found that the Pt nanoparticles in pure Ti3C2Tx surface are serious aggregated and show poor dispersion, whereas the Pt nanoparticles in SDS modified-Ti3C2Tx have a better dispersion. The electrochemical results revealed that SDS modified-Ti3C2Tx supported Pt nanoparticles has higher electrocatalytic activity and stability in both acidic and alkaline ethanol oxidation when the dosage of SDS increases to 100 mg. These findings indicate that the SDS-Ti3C2Tx/Pt catalysts show a promising future of potential applications in fuel cells with modification of Ti3C2Tx support.


MRS Advances ◽  
2021 ◽  
Author(s):  
Janne Pakarinen ◽  
Lingfeng He ◽  
Jian Gan ◽  
Andrew T. Nelson ◽  
Anter El-Azab ◽  
...  

AbstractProton (H+) irradiation effects in polycrystalline UO2 have been studied. The irradiation was carried out using three ion energies and two different ion fluxes at 600 °C. Scanning electron microscopy (SEM) investigations showed that significant surface flaking took place. Focused ion beam (FIB) milling in SEM was successfully applied for extracting lamellas from uneven blistered surfaces for transmission electron microscopy (TEM) investigations allowing detailed investigations for the degradation mechanisms. High-resolution TEM for the flaked UO2 surfaces revealed that the implanted H+ formed sharp two-dimensional cavities at the peak ion-stopping region instead of diffusing to the matrix. The resulting lateral stress likely caused UO2 surface deterioration in good agreement with previous blistering and flaking studies on crystalline materials. Graphical abstract


2021 ◽  
Author(s):  
RATHIKA GOVINDASAMY ◽  
SUBA VELU ◽  
SANTHANA LAKSHMI DURAIKKANNU ◽  
ROOPALA RANI SEKAR

Abstract In recent decades, the analysis of nanoparticles is of greater importance for their applications in various fields. This present work also focuses the novel biological green material to synthesize the copper and cobalt oxide nanoparticles. The copper oxide (CuO) and cobalt oxide (Co3O4) nanoparticles (nps)have been synthesized by biological strategy utilizing AH (Araucaria heterophylla) gum extract. The characterization techniques, i.e. UV, GC-MS, FT-IR, XRD, SEM, HR-TEM provide concrete information about the morphology, crystalline nature and structure of the synthesized nanoparticles. The high resolution TEM and SAED images confirm the formation of spherical shaped (Co3O4) and oval shaped (CuO) isolated nanoparticles. The catalytic adequacy of the developed catalyst, copper oxide (CuO) and cobalt oxide (Co3O4) nanoparticles was analyzed for the degradation of dyes: Methylene Blue (MB), Congo Red (CR), Acid Violet (AV).The kinetic investigations for the reduction of synthetic dyes by the nanoparticles were assessed and the reduction contemplates are very much fitted with the pseudo second order kinetic model with less time.The antibacterial and antifungal activity of the prepared nanoparticles have been evaluated against Escherichiacoli, Staphylococcus aureus, Bacillus subtilis, Aspergillusniger and Candida albicans.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2923
Author(s):  
Volodymyr Dzhagan ◽  
Olga Kapush ◽  
Nazar Mazur ◽  
Yevhenii Havryliuk ◽  
Mykola I. Danylenko ◽  
...  

Cu-Zn-Sn-Te (CZTTe) is an inexpensive quaternary semiconductor that has not been investigated so far, unlike its intensively studied CZTS and CZTSe counterparts, although it may potentially have desirable properties for solar energy conversion, thermoelectric, and other applications. Here, we report on the synthesis of CZTTe nanocrystals (NCs) via an original low-cost, low-temperature colloidal synthesis in water, using a small-molecule stabilizer, thioglycolic acid. The absorption edge at about 0.8–0.9 eV agrees well with the value expected for Cu2ZnSnTe4, thus suggesting CZTTe to be an affordable alternative for IR photodetectors and solar cells. As the main method of structural characterization multi-wavelength resonant Raman spectroscopy was used complemented by TEM, XRD, XPS as well as UV-vis and IR absorption spectroscopy. The experimental study is supported by first principles density functional calculations of the electronic structure and phonon spectra. Even though the composition of NCs exhibits a noticeable deviation from the Cu2ZnSnTe4 stoichiometry, a common feature of multinary NCs synthesized in water, the Raman spectra reveal very small widths of the main phonon peak and also multi-phonon scattering processes up to the fourth order. These factors imply a very good crystallinity of the NCs, which is further confirmed by high-resolution TEM.


2021 ◽  
Vol 12 ◽  
pp. 106-115
Author(s):  
Oscar Secundino-Sánchez ◽  
José F. Sánchez-Ramírez ◽  
Joel Diaz-Reyes

TiO2 nanofibres were synthesised by means of the electrospinning technique, which were annealed at high temperatures to achieve the crystalline phase transformation. The chemical stoichiometry of electrospun TiO2 nanofibres was estimated by EDS, finding that at low annealing temperatures excess of oxygen was detected and at high temperatures excess of titanium that originates oxygen vacancies. TEM images show clearly the formation of TiO2 nanofibres that exhibit a homogeneous and continuous aspect without the presence of crystalline defects, whose surface morphology depends strongly on the annealing temperature. The crystalline phase transformation was studied by Raman spectroscopy, which revealed that annealed TiO2 nanofibres showed a crystalline phase transformation from pure anatase to, first a mix of anatase-rutile, then pure rutile as the annealing temperature increased, which was corroborated by X-ray diffraction and high-resolution TEM microscopy. The average grain size, inside the nanofibres, increased with the crystalline phase transformation from 10 to 24 nm for anatase-TiO2 and from 30 to 47 nm for rutile-TiO2, estimated by using the Scherrer-Debye equation. The band gap energy (Eg), obtained from optical absorption spectra, decreases monotonically, where a local minimum is observed at 700 °C, which is ranged in 3.75  Eg  2.42 eV, caused by the anatase → rutile crystalline phase transformation. The photoluminescence shows that radiative bands present a gradual red-shift as the annealing temperature increases due to the continuous change of Eg.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5458
Author(s):  
Íris Carneiro ◽  
Sónia Simões

Nickel nanocomposites reinforced by carbon nanotubes (Ni-CNTs) are one of the possible candidates for applications in highly demanding industries such as the automotive and aerospace industries. As is well known, one of the limitations on the use of some materials in these applications is thermal stability. Some components in these industries are frequently subjected to high temperatures, which is crucial to understanding their microstructures and, consequently, their mechanical properties. For this reason, the main objective of this research is to understand the microstructural evolution of Ni-CNTs nanocomposites when subjected to heat treatment. The nanocomposites with varying levels of CNT content were produced by powder metallurgy, and unreinforced nickel was used for comparison purposes under the same conditions. The dispersion of CNTs, a critical aspect of nanocomposites production, was carried out by ultrasonication, which already proved its efficiency in previous research. The heat treatments were performed under high vacuum conditions at high temperatures (700 and 1100 °C for 30 and 120 min, respectively). Microhardness tests analyzed the mechanical properties while the extensive microstructural evaluation was conducted by combining advanced characterization techniques such as scanning electron microscopy (SEM) with electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), and high-resolution TEM. The obtained results are promising and show that the presence of CNTs can contribute to the thermal stability of the Ni-CNT nanocomposites produced.


Author(s):  
Oscar Secundino-Sánchez ◽  
José F. Sánchez-Ramírez ◽  
Joel Diaz -Reyes

TiO2 nanofibers were synthesised by means of the electrospinning technique, which were annealed at high temperatures to achieve the crystalline phase transformation. The chemical stoichiometry of electrospun TiO2 nanofibers was estimated by EDS, finding that at low annealing temperatures excess of oxygen was detected and at high temperatures excess of titanium that originates oxygen vacancies. TEM images show clearly the formation of TiO2 nanofibers (NF’s) that exhibit a homogeneous and continuous aspect without the presence of crystalline defects, whose surface morphology depends strongly on the annealing temperature. The crystalline phase transformation was studied by Raman spectroscopy, which revealed that annealed TiO2 NF’s showed a crystalline phase transformation from pure anatase to, first a mix of anatase-rutile, then pure rutile as the annealing temperature increased, which was corroborated by X-ray diffraction and high-resolution TEM diffraction. The average grain size, inside the NF´s, increased with the crystalline phase transformation from 10 to 24 nm for anatase-TiO2 and from 30 to 47 nm for rutile-TiO2, estimated by using the Scherrer-Debye equation. The band gap energy (Eg), obtained from optical absorption spectra, decreases monotonically, where a local minimum is observed at 700 °C ranged in 3.75 ≤ Eg ≤ 2.42 eV, caused by the anatase → rutile crystalline phase transformation. The photoluminescence shows that radiative bands show a gradual red-shift as the temperature increases due to the continuous change of Eg.


Sign in / Sign up

Export Citation Format

Share Document