orientation relationships
Recently Published Documents


TOTAL DOCUMENTS

647
(FIVE YEARS 101)

H-INDEX

35
(FIVE YEARS 5)

2022 ◽  
Vol 55 (1) ◽  
Author(s):  
Ruth Birch ◽  
Thomas Benjamin Britton

Materials with an allotropic phase transformation can form microstructures where grains have orientation relationships determined by the transformation history. These microstructures influence the final material properties. In zirconium alloys, there is a solid-state body-centred cubic (b.c.c.) to hexagonal close-packed (h.c.p.) phase transformation, where the crystal orientations of the h.c.p. phase can be related to the parent b.c.c. structure via the Burgers orientation relationship (BOR). In the present work, a reconstruction code, developed for steels and which uses a Markov chain clustering algorithm to analyse electron backscatter diffraction maps, is adapted and applied to the h.c.p./b.c.c. BOR. This algorithm is released as open-source code (via github, as ParentBOR). The algorithm enables new post-processing of the original and reconstructed data sets to analyse the variants of the h.c.p. α phase that are present and understand shared crystal planes and shared lattice directions within each parent β grain; it is anticipated that this will assist in understanding the transformation-related deformation properties of the final microstructure. Finally, the ParentBOR code is compared with recently released reconstruction codes implemented in MTEX to reveal differences and similarities in how the microstructure is described.


Author(s):  
D N Horspool ◽  
D K Tappin ◽  
M Aindow

Author(s):  
Е.И. Суворова ◽  
Ф.Ю. Соломкин ◽  
Н.А. Архарова ◽  
Н.В. Шаренкова ◽  
Г.Н. Исаченко

The phase composition, microstructure, and interphase interfaces of the disordered CrSi2-FeSi2 solid solution obtained by spontaneous crystallization (before and after annealing) have been investigated by scanning, transmission electron microscopy, electron diffraction, and X-ray energy dispersive spectrometry. The as-grown samples contained the phases of CrSi2 with the P6422 hexagonal structure and FeSi2 with the P4/mmm tetragonal structure. Annealing of the samples led to the phase transformation of tetragonal FeSi2 into the orthorhombic modification Cmca. Precipitates of cubic iron monosilicide FeSi with space group P213, nano-precipitates of Si and silicon silicide Cr5Si3 with a tetragonal structure I4/mcm were observed inside the FeSi2 grains. Impurities of interstitial Cr atoms with a concentration up to 2.0 at% are found in iron (di)silicides grains in all samples. The structure of the CrSi2 phase remains unchanged after annealing; the concentration of impurity iron atoms is about 0.7 at%. Orientation relationships between the crystal lattices of the phases are established and strains due to the mismatch of the crystal lattices are determined.


Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Qing Cai ◽  
Brian Cantor ◽  
Vivian S. Tong ◽  
Feng Wang ◽  
Chamini L. Mendis ◽  
...  

The microstructure evolution and mechanical properties of quaternary Al-Cu-Si-Mg eutectic alloy prepared via arc melting and suction casting were studied. This alloy exhibits a single endothermic DSC peak with a melting temperature of 509 °C upon heating, suggesting a eutectic reaction. The cast alloy microstructure consisted of four phases, α-Al, Al2Cu (), Si and Al4Cu2Mg8Si7 (Q), in the eutectic cells and also in the nano-scale anomalous eutectic in the intercellular regions. The eutectic cells show different morphologies in different parts of the sample. Well-defined orientation relationships between the α-Al, Al2Cu, and Q phases were found in the eutectic cell centres, while decoupled growth of Q phase occurred at the cell boundaries. The bimodal microstructure exhibits excellent compressive mechanical properties, including a yield strength of 835 ± 35 MPa, a fracture strength of ~1 GPa and a compressive fracture strain of 4.7 ± 1.1%. The high strength is attributed to a combination of a refined eutectic structure and strengthening from multiple hard phases.


Author(s):  
Zhiyong Jian ◽  
Yangchun Chen ◽  
Shifang Xiao ◽  
Liang Wang ◽  
Xiaofan Li ◽  
...  

Abstract An effective and reliable Finnis-Sinclair (FS) type potential is developed for large-scale molecular dynamics (MD) simulations of plasticity and phase transition of Magnesium (Mg) single crystals under high-pressure shock loading. The shock-wave profiles exhibit a split elastic-inelastic wave in the [0001]HCP shock orientation and a three-wave structure in the [10-10]HCP and [-12-10]HCP directions, namely, an elastic precursor following the plastic and phase-transition fronts. The shock Hugoniot of the particle velocity (Up) vs. the shock velocity (Us) of Mg single crystals in three shock directions under low shock strength reveals apparent anisotropy, which vanishes with increasing shock strength. For the [0001]HCP shock direction, the amorphization caused by strong atomic strain plays an important role in the phase transition and allows for the phase transition from an isotropic stressed state to the daughter phase. The reorientation in the shock directions [10-10]HCP and [-12-10]HCP, as the primary plasticity deformation, leads to the compressed hexagonal close-packed (HCP) phase and reduces the phase-transition threshold pressure. The phase-transition pathway in the shock direction [0001]HCP includes a preferential contraction strain along the [0001]HCP direction, a tension along [-12-10]HCP direction, an effective contraction and shear along the [10-10]HCP direction. For the [10-10]HCP and [-12-10]HCP shock directions, the phase-transition pathway consists of two steps: a reorientation and the subsequent transition from the reorientation hexagonal close-packed phase (RHCP) to the body-centered cubic (BCC). The orientation relationships between HCP and BCC are (0001)HCP á-12-10ñHCP // {110}BCC á001ñBCC. Due to different slipping directions during the phase transition, three variants of the product phase are observed in the shocked samples, accompanied by three kinds of typical coherent twin-grain boundaries between the variants. The results indicate that the highly concentrated shear stress leads to the crystal lattice instability in the elastic precursor, and the plasticity or the phase transition relaxed the shear stress.


2021 ◽  
Author(s):  
Jian Wang ◽  
Yusuke Hirayama ◽  
Zheng Liu ◽  
Kazuyuki Suzuki ◽  
Wataru Yamaguchi ◽  
...  

Abstract L10-ordered FeNi alloy (tetrataenite), a promising candidate for rare-earth-free and low-cost permanent magnet applications, is attracting increasing attention from academic and industrial communities. Highly ordered single-phase L10-FeNi is difficult to synthesis efficiently because of its low chemical order-disorder transition temperature (200–320 ℃). A non-equilibrium synthetic route utilizing a nitrogen topotactic reaction has been considered a valid approach, although the phase transformation mechanism is currently unknown. Herein, we investigated the basis of this reaction, namely the formation mechanism of the tetragonal FeNiN precursor phase during the nitridation of FeNi nanopowders. Detailed microstructure analysis revealed that the FeNiN precursor phase could preferentially nucleated at the nanotwinned region during nitridation and subsequently grew following a massive transformation, with high-index irrational orientation relationships and ledgewise growth motion detected at the migrating phase interface. This is the first report of a massive phase transformation detected in an Fe-Ni-N system and provides new insights into the phase transformation during the nitriding process. This work is expected to promote the synthetic optimization of fully ordered FeNi alloys for various magnetic applications.


2021 ◽  
pp. 1-13
Author(s):  
Joseph R. Michael ◽  
Lucille A. Giannuzzi ◽  
M. Grace Burke ◽  
Xiang Li Zhong

The transformation of unstable austenite to ferrite or α′ martensite as a result of exposure to Xe+ or Ga+ ions at room temperature was studied in a 304 stainless steel casting alloy. Controlled Xe+ and Ga+ ion beam exposures of the 304 were carried out at a variety of beam/sample geometries. It was found that both Ga+ and Xe+ ion irradiation resulted in the transformation of the austenite to either ferrite or α′ martensite. In this paper, we will refer to the transformation product as a BCC phase. The crystallographic orientation of the transformed area was controlled by the orientation of the austenite grain and was consistent with either the Nishiyama–Wasserman or the Kurdjumov–Sachs orientation relationships. On the basis of the Xe+ and Ga+ ion beam exposures, the transformation is not controlled by the chemical stabilization of the BCC phase by the ion species, but is a result of the disorder caused by the ion-induced recoil motion and subsequent return of the disordered region to a more energetically favorable phase.


Geology ◽  
2021 ◽  
Author(s):  
Brendan Dyck ◽  
Marian Holness

High-silica (>70 wt% SiO2) granites (HSGs) are critical carriers of tin, copper, and other melt-incompatible elements, yet much remains unknown about the mechanisms responsible for their formation. One of the key issues is the apparent lack of evidence for crystal-melt segregation (e.g., modal layering), without which little can be inferred about the dynamics (or lack thereof) of crystallizing HSGs. We examined the crystallographic orientation relationships of clustered quartz crystals from the 300-m-thick Bobbejaankop sill, Bushveld Complex, South Africa. We report an inward increase in the number density and size of quartz clusters toward the central horizon of the sill, coinciding with a significant increase in concentrations of tin, copper, and tungsten. The majority of crystal pairs within each cluster exhibit coincident-site lattice orientation relationships, representing low grain-boundary energy configurations. These clusters must have formed by synneusis in a magmatic environment where crystals could have moved freely, rotating into low-energy orientations on contact. We argue that this not only demonstrates that 100-m-scale crystal-poor and liquid-rich regions can be present in bodies of HSG, but also that such bodies can undergo long-lived convection during crystallization, driven by downwards movement of crystal-rich plumes at the roof, without significant crystal-melt segregation. This dynamic behavior provides a mechanism to homogenize major-element distribution across HSGs and to concentrate highly incompatible and economic elements into central mineralized horizons.


2021 ◽  
Vol 176 (12) ◽  
Author(s):  
Ge Bian ◽  
Olga Ageeva ◽  
Aleksander Rečnik ◽  
Gerlinde Habler ◽  
Rainer Abart

AbstractPlagioclase hosted needle- and lath-shaped magnetite micro-inclusions from oceanic gabbro dredged at the mid-Atlantic ridge at 13° 01–02′ N, 44° 52′ W were investigated to constrain their formation pathway. Their genesis is discussed in the light of petrography, mineral chemistry, and new data from transmission electron microscopy (TEM). The magnetite micro-inclusions show systematic crystallographic and shape orientation relationships with the plagioclase host. Direct TEM observation and selected area electron diffraction (SAED) confirm that the systematic orientation relations are due to the alignment of important oxygen layers between the magnetite micro-inclusions and the plagioclase host, a hypothesis made earlier based on electron backscatter diffraction data. Precipitation from Fe-bearing plagioclase, which became supersaturated with respect to magnetite due to interaction with a reducing fluid, is inferred to be the most likely formation pathway. This process probably occurred without the supply of Fe from an external source but required the out-diffusion of oxygen from the plagioclase to facilitate partial reduction of the ferric iron originally contained in the plagioclase. The magnetite micro-inclusions contain oriented lamellae of ilmenite, the abundance, shape and size of which indicate high-temperature exsolution from Ti-rich magnetite constraining the precipitation of the magnetite micro-inclusions to temperatures in excess of ~ 600 °C. This is above the Curie temperature of magnetite, and the magnetic signature of the magnetite-bearing plagioclase grains must, therefore, be considered as the thermoremanent magnetization.


Sign in / Sign up

Export Citation Format

Share Document