scholarly journals Transverse currents in triplet Josephson junction with spin-orbit coupling

2012 ◽  
Vol 85 (2) ◽  
Author(s):  
Huan Zhang ◽  
K. S. Chan ◽  
Zijing Lin ◽  
J. Wang
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
William Mayer ◽  
Matthieu C. Dartiailh ◽  
Joseph Yuan ◽  
Kaushini S. Wickramasinghe ◽  
Enrico Rossi ◽  
...  

AbstractIn a standard Josephson junction the current is zero when the phase difference between superconducting leads is zero. This condition is protected by parity and time-reversal symmetries. However, the combined presence of spin–orbit coupling and magnetic field breaks these symmetries and can lead to a finite supercurrent even when the phase difference is zero. This is the so called anomalous Josephson effect—the hallmark effect of superconducting spintronics—which can be characterized by the corresponding anomalous phase shift. Here we report the observation of a tunable anomalous Josephson effect in InAs/Al Josephson junctions measured via a superconducting quantum interference device. By gate controlling the density of InAs, we are able to tune the spin–orbit coupling in the Josephson junction. This gives us the ability to tune the anomalous phase, and opens new opportunities for superconducting spintronics, and new possibilities for realizing and characterizing topological superconductivity.


2021 ◽  
Vol 90 (7) ◽  
pp. 074602
Author(s):  
Jing-Zhi Pan ◽  
Zheng-Fang Chen ◽  
Jian Feng ◽  
Hui-Liang Ye ◽  
Yi-Cai Zhang ◽  
...  

2019 ◽  
Vol 116 (10) ◽  
pp. 4006-4011 ◽  
Author(s):  
H.-H. Kung ◽  
A. P. Goyal ◽  
D. L. Maslov ◽  
X. Wang ◽  
A. Lee ◽  
...  

The protected electron states at the boundaries or on the surfaces of topological insulators (TIs) have been the subject of intense theoretical and experimental investigations. Such states are enforced by very strong spin–orbit interaction in solids composed of heavy elements. Here, we study the composite particles—chiral excitons—formed by the Coulomb attraction between electrons and holes residing on the surface of an archetypical 3D TI,Bi2Se3. Photoluminescence (PL) emission arising due to recombination of excitons in conventional semiconductors is usually unpolarized because of scattering by phonons and other degrees of freedom during exciton thermalization. On the contrary, we observe almost perfectly polarization-preserving PL emission from chiral excitons. We demonstrate that the chiral excitons can be optically oriented with circularly polarized light in a broad range of excitation energies, even when the latter deviate from the (apparent) optical band gap by hundreds of millielectronvolts, and that the orientation remains preserved even at room temperature. Based on the dependences of the PL spectra on the energy and polarization of incident photons, we propose that chiral excitons are made from massive holes and massless (Dirac) electrons, both with chiral spin textures enforced by strong spin–orbit coupling. A theoretical model based on this proposal describes quantitatively the experimental observations. The optical orientation of composite particles, the chiral excitons, emerges as a general result of strong spin–orbit coupling in a 2D electron system. Our findings can potentially expand applications of TIs in photonics and optoelectronics.


2019 ◽  
Vol 31 (18) ◽  
pp. 185802 ◽  
Author(s):  
Sayantika Bhowal ◽  
Shreemoyee Ganguly ◽  
Indra Dasgupta

Sign in / Sign up

Export Citation Format

Share Document