quantum interference
Recently Published Documents


TOTAL DOCUMENTS

3550
(FIVE YEARS 482)

H-INDEX

103
(FIVE YEARS 13)

Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 102
Author(s):  
Junjie Wu ◽  
Qingquan Zhi ◽  
Xiaohong Deng ◽  
Xingchun Wang ◽  
Xiaodong Chen ◽  
...  

The Qingchengzi orefield is an important polymetallic ore concentration zone in the northern margin of the North China Craton (NCC). The region has significant metallogenic potential for deep mining. Many areas with gold mineralization have been found in the shallow area of Taoyuan–Xiaotongjiapuzi–Linjiasandaogou in the east of the Qingchengzi orefield. To assess the distribution of mineralization levels, we carried out deep exploration using the transient electromagnetic method (TEM). A superconductive quantum interference device (SQUID) magnetometer and a conventional induction coil were used for field data acquisition. The SQUID data inversion results reflect the bottom interface of the high-conductivity area, the fold state of the underlying dolomite marble stratum, and the deep structural characteristics of the syncline. Secondary crumples appear in the inversion results of the southern segment of TEM, which is inferred as a favorable area for deep gold mineralization. Negative values appear in the SQUID data of some stations, to varying degrees. This induced polarization phenomenon may be related to deep gold mineralization.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Behzad Sangshekan ◽  
Mostafa Sahrai ◽  
Seyyed Hossein Asadpour ◽  
Jafar Poursamad Bonab

AbstractA five-level atomic system is proposed in vicinity of a two-dimensional (2D) plasmonic nanostructure with application in atom-photon entanglement. The behavior of the atom-photon entanglement is discussed with and without a control laser field. The amount of atom-photon entanglement is controlled by the quantum interference created by the plasmonic nanostructure. Thus, the degree of atom-photon entanglement is affected by the atomic distance from the plasmonic nanostructure. In the presence of a control field, maximum entanglement between the atom and its spontaneous emission field is observed.


2021 ◽  
Author(s):  
Marc H. Garner ◽  
Mads Koerstz ◽  
Jan H. Jensen ◽  
Gemma C. Solomon

The single-molecule conductance of saturated molecules can potentially be fully suppressed by destructive quantum interference in their σ-system. However, only few molecules with σ-interference have been identified and the structure-property relationship remains to be elucidated. Here, we explore the role of substituents in modulating the electronic transmission of saturated molecules. In functionalized bicyclo[2.2.2]octanes, the transmission is suppressed by σ- interference when fluorine substituents are applied. For bicyclo[2.2.2]octasilane and - octagermanes the transmission is suppressed when carbon-based substituents are used, and such molecules are likely to be highly insulating. For the carbon-based substituents we find a strong correlation between the appropriate Hammett constants and the transmission. The substituent effect enables systematic optimization of the insulating properties of saturated molecular cores.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 46
Author(s):  
Jannis Thien ◽  
Jascha Bahlmann ◽  
Andreas Alexander ◽  
Kevin Ruwisch ◽  
Jari Rodewald ◽  
...  

Here, we present the (element-specific) magnetic properties and cation ordering for ultrathin Co-rich cobalt ferrite films. Two Co-rich CoxFe3−xO4 films with different stoichiometry (x=1.1 and x=1.4) have been formed by reactive solid phase epitaxy due to post-deposition annealing from epitaxial CoO/Fe3O4 bilayers deposited before on Nb-doped SrTiO3(001). The electronic structure, stoichiometry and homogeneity of the cation distribution of the resulting cobalt ferrite films were verified by angle-resolved hard X-ray photoelectron spectroscopy. From X-ray magnetic circular dichroism measurements, the occupancies of the different sublattices were determined using charge-transfer multiplet calculations. For both ferrite films, a partially inverse spinel structure is found with increased amount of Co3+ cations in the low-spin state on octahedral sites for the Co1.4Fe1.6O4 film. These findings concur with the results obtained by superconducting quantum interference device measurements. Further, the latter measurements revealed the presence of an additional soft magnetic phase probably due to cobalt ferrite islands emerging from the surface, as suggested by atomic force microscope measurements.


2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Hong Liang ◽  
Kai Ming Lau ◽  
Wai Chun Wong ◽  
Shengwang Du ◽  
Wing Yim Tam ◽  
...  

Author(s):  
Eylon Persky ◽  
Ilya Sochnikov ◽  
Beena Kalisky

Electronic correlations give rise to fascinating macroscopic phenomena such as superconductivity, magnetism, and topological phases of matter. Although these phenomena manifest themselves macroscopically, fully understanding the underlying microscopic mechanisms often requires probing on multiple length scales. Spatial modulations on the mesoscopic scale are especially challenging to probe, owing to the limited range of suitable experimental techniques. Here, we review recent progress in scanning superconducting quantum interference device (SQUID) microscopy. We demonstrate how scanning SQUID combines unmatched magnetic field sensitivity and highly versatile designs, by surveying discoveries in unconventional superconductivity, exotic magnetism, topological states, and more. Finally, we discuss how SQUID microscopy can be further developed to answer the increasing demand for imaging new quantum materials. Expected final online publication date for the Annual Review of Condensed Matter Physics, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1588
Author(s):  
Denis Crété ◽  
Julien Kermorvant ◽  
Yves Lemaître ◽  
Bruno Marcilhac ◽  
Salvatore Mesoraca ◽  
...  

Arrays of superconducting quantum interference devices (SQUIDs) are highly sensitive magnetometers that can operate without a flux-locked loop, as opposed to single SQUID magnetometers. They have no source of ambiguity and benefit from a larger bandwidth. They can be used to measure absolute magnetic fields with a dynamic range scaling as the number of SQUIDs they contain. A very common arrangement for a series array of SQUIDs is with meanders as it uses the substrate area efficiently. As for most layouts with long arrays, this layout breaks the symmetry required for the elimination of adverse self-field effects. We investigate the scaling behavior of series arrays of SQUIDs, taking into account the self-field generated by the bias current flowing along the meander. We propose a design for the partial compensation of this self-field. In addition, we provide a comparison with the case of series arrays of long Josephson junctions, using the Fraunhofer pattern for applications in magnetometry. We find that compensation is required for arrays of the larger size and that, depending on the technology, arrays of long Josephson junctions may have better performance than arrays of SQUIDs.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3322
Author(s):  
Shu-Hsuan Su ◽  
Jen-Te Chang ◽  
Pei-Yu Chuang ◽  
Ming-Chieh Tsai ◽  
Yu-Wei Peng ◽  
...  

The intrinsic magnetic topological insulator MnBi2Te4 has attracted much attention due to its special magnetic and topological properties. To date, most reports have focused on bulk or flake samples. For material integration and device applications, the epitaxial growth of MnBi2Te4 film in nanoscale is more important but challenging. Here, we report the growth of self-regulated MnBi2Te4 films by the molecular beam epitaxy. By tuning the substrate temperature to the optimal temperature for the growth surface, the stoichiometry of MnBi2Te4 becomes sensitive to the Mn/Bi flux ratio. Excessive and deficient Mn resulted in the formation of a MnTe and Bi2Te3 phase, respectively. The magnetic measurement of the 7 SL MnBi2Te4 film probed by the superconducting quantum interference device (SQUID) shows that the antiferromagnetic order occurring at the Néel temperature 22 K is accompanied by an anomalous magnetic hysteresis loop along the c-axis. The band structure measured by angle-resolved photoemission spectroscopy (ARPES) at 80 K reveals a Dirac-like surface state, which indicates that MnBi2Te4 has topological insulator properties in the paramagnetic phase. Our work demonstrates the key growth parameters for the design and optimization of the synthesis of nanoscale MnBi2Te4 films, which are of great significance for fundamental research and device applications involving antiferromagnetic topological insulators.


2021 ◽  
Vol 81 (12) ◽  
Author(s):  
B. Blok ◽  
R. Segev

AbstractWe study the influence of quantum interference and colour flow on three point correlations described by asymmetric cumulants in high multiplicity events in pp collisions. We use the model previously developed for the study of the collectivity in symmetric cumulants. We show that the resulting three point asymmetric cumulant is in qualitative agreement with the experimental data for the same parameters of the model as it was with the symmetric cumulants. Our results show that the initial state correlations must play a major role and may be even dominant in the explanation of the correlations in high multiplicity pp events.


Sign in / Sign up

Export Citation Format

Share Document