scholarly journals Two-particle interferometry for the sources undergoing a first-order QCD phase transition in high-energy heavy ion collisions

2012 ◽  
Vol 86 (2) ◽  
Author(s):  
Hong-Jie Yin ◽  
Jing Yang ◽  
Wei-Ning Zhang ◽  
Li-Li Yu
2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Z. J. Jiang ◽  
Dongfang Xu ◽  
Yan Huang

In heavy ion collisions, charged particles come from two parts: the hot and dense matter and the leading particles. In this paper, the hot and dense matter is assumed to expand according to the hydrodynamic model including phase transition and decouples into particles via the prescription of Cooper-Frye. The leading particles are as usual supposed to have Gaussian rapidity distributions with the number equaling that of participants. The investigations of this paper show that, unlike low energy situations, the leading particles are essential in describing the pseudorapidity distributions of charged particles produced in high energy heavy ion collisions. This might be due to the different transparencies of nuclei at different energies.


2002 ◽  
Vol 17 (08) ◽  
pp. 1149-1158 ◽  
Author(s):  
A. P. BALACHANDRAN ◽  
S. DIGAL

We extend and generalize the seminal work of Brandenberger, Huang and Zhang on the formation of strings during chiral phase transitions1 and discuss the formation of Abelian and non-Abelian topological strings during such transitions in the early universe and in the high energy heavy-ion collisions. Chiral symmetry as well as deconfinement are restored in the core of these defects. Formation of a dense network of string defects is likely to play an important role in the dynamics following the chiral phase transition. We speculate that such a network can give rise to non-azimuthal distribution of transverse energy in heavy-ion collisions.


2015 ◽  
Vol 29 (18) ◽  
pp. 1550092
Author(s):  
A. Lavagno ◽  
D. Pigato ◽  
G. Gervino

One of the very interesting aspects of high energy heavy-ion collisions experiments is a detailed study of the thermodynamical properties of strongly interacting nuclear matter away from the nuclear ground state. In this direction, many efforts were focused on searching for possible phase transitions in such collisions. We investigate thermodynamic instabilities in a hot and dense nuclear medium where a phase transition from nucleonic matter to resonance-dominated [Formula: see text]-matter can take place. Such a phase transition can be characterized by both mechanical instability (fluctuations on the baryon density) and by chemical-diffusive instability (fluctuations on the strangeness concentration) in asymmetric nuclear matter. In analogy with the liquid–gas nuclear phase transition, hadronic phases with different values of antibaryon–baryon ratios and strangeness content may coexist. Such a physical regime could be, in principle, investigated in the future high-energy compressed nuclear matter experiments which will make it possible to create compressed baryonic matter with a high net baryon density.


Sign in / Sign up

Export Citation Format

Share Document