Self-consistent tensor effects on nuclear matter systems within a relativistic Hartree-Fock approach

2015 ◽  
Vol 91 (2) ◽  
Author(s):  
Li Juan Jiang ◽  
Shen Yang ◽  
Jian Min Dong ◽  
Wen Hui Long
2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Khaled S. A. Hassaneen

Symmetric nuclear matter is studied within the Brueckner-Hartree-Fock (BHF) approach and is extending to the self-consistent Green’s function (SCGF) approach. Both approximations are based on realistic nucleon-nucleon interaction; that is, CD-Bonn potential is chosen. The single-particle energy and the equation of state (EOS) are studied. The Fermi energy at the saturation point fulfills the Hugenholtz-Van Hove theorem. In comparison to the BHF approach, the binding energy is reduced and the EOS is stiffer. Both the SCGF and BHF approaches do not reproduce the correct saturation point. A simple contact interaction should be added to SCGF and BHF approaches to reproduce the empirical saturation point.


2005 ◽  
Vol 14 (02) ◽  
pp. 279-295 ◽  
Author(s):  
KH. GAD

The influence of hole–hole propagation in addition to the conventional particle–particle propagation on the energy per nucleon and the momentum distribution is investigated. The results are compared to the Brueckner–Hartree–Fock (BHF) calculations with a continuous choice and a conventional choice for the single-particle spectrum. Also, the structure of nucleon self-energy in nuclear matter is evaluated. All the off-shell self-energies are calculated self-consistently. Using the self-consistent self-energy, the hole and particle self-consistent spectral functions including the particle–particle and hole–hole ladder contributions in nuclear matter are calculated using realistic NN interactions. We found that the hole–hole ladder brought about non-negligible contributions to the nuclear matter binding energy per nucleon.


1981 ◽  
Vol 36 (3) ◽  
pp. 272-275 ◽  
Author(s):  
Subal Chandra Saha ◽  
Sankar Sengupta

It is possible to reproduce the entire results of Pekeris et al. of different atomic parameters for the He atom by introducing (ll) type correlation in a self consistent variation perturbation procedure using the Hartree-Fock (HF) wavefunction as the zero-order wavefunction


2006 ◽  
Vol 61 (7-8) ◽  
pp. 364-370 ◽  
Author(s):  
Babu Lal Ahuja ◽  
Narayan Lal Heda

In this paper we report on electron momentum densities in ZnSe using Compton scattering technique. For the directional measurements we have employed a newly developed 100 mCi 241Am Compton spectrometer which is based on a small disc source with shortest geometry. For the theoretical calculations we have employed a self-consistent Hartree-Fock linear combination of atomic orbitals (HF-LCAO) approach. It is seen that the anisotropy in the measured Compton profiles is well reproduced by our HF-LCAOcalculation and the other available pseudopotential data. The anisotropy in the Compton profiles is explained in terms of energy bands and bond length. - PACS numbers: 13.60.Fz, 78.70. Ck, 78.70.-g


2021 ◽  
Vol 10 (4) ◽  
Author(s):  
Yuri Daniel van Nieuwkerk ◽  
Jörg Schmiedmayer ◽  
Fabian Essler

We consider the non-equilibrium dynamics of a weakly interacting Bose gas tightly confined to a highly elongated double well potential. We use a self-consistent time-dependent Hartree--Fock approximation in combination with a projection of the full three-dimensional theory to several coupled one-dimensional channels. This allows us to model the time-dependent splitting and phase imprinting of a gas initially confined to a single quasi one-dimensional potential well and obtain a microscopic description of the ensuing damped Josephson oscillations.


Sign in / Sign up

Export Citation Format

Share Document