particle energy
Recently Published Documents


TOTAL DOCUMENTS

634
(FIVE YEARS 91)

H-INDEX

34
(FIVE YEARS 1)

2022 ◽  
Vol 12 (2) ◽  
pp. 705
Author(s):  
Giuseppe Di Sciascio

Cosmic rays represent one of the most important energy transformation processes of the universe. They bring information about the surrounding universe, our galaxy, and very probably also the extragalactic space, at least at the highest observed energies. More than one century after their discovery, we have no definitive models yet about the origin, acceleration and propagation processes of the radiation. The main reason is that there are still significant discrepancies among the results obtained by different experiments located at ground level, probably due to unknown systematic uncertainties affecting the measurements. In this document, we will focus on the detection of galactic cosmic rays from ground with air shower arrays up to 1018 eV. The aim of this paper is to discuss the conflicting results in the 1015 eV energy range and the perspectives to clarify the origin of the so-called `knee’ in the all-particle energy spectrum, crucial to give a solid basis for models up to the end of the cosmic ray spectrum. We will provide elements useful to understand the basic techniques used in reconstructing primary particle characteristics (energy, mass, and arrival direction) from the ground, and to show why indirect measurements are difficult and results are still conflicting.



Author(s):  
Xie Tianci ◽  
Bo He ◽  
Qieming Shi ◽  
Jinqian Qian ◽  
Wenjing Hao ◽  
...  

Abstract Measurements using an Optical Fiber OFS including an inorganic scintillator placed on the surface of a phantom show that the particle energy distribution inside the phantom remains unchanged. The backscattered intensity measured using an Optical Fiber Sensor (OFS) exhibits a linear relationship with the total radiation dose delivered to the phantom, and this relationship shows that the OFS can be used for indirect dose measurement when located on the surface of the phantom i.e. that arising from the energetic backscattered electrons and photons. Such a device can therefore be used as a clinical in-vivo dosimeter, being located on the patient’s body surface. In addition, the measurement results for the same OFS located inside and outside the radiation field of a compound water based phantom are analyzed. The differences in measurement of the fluorescence signal in response to various tissue materials representing bone or tumor tissue in the irradiation field are strongly related to the material's ability to block the scattered rays from the water phantom, as well as the scattered X-rays generated by the material located within the phantom.



2022 ◽  
Vol 924 (1) ◽  
pp. L7
Author(s):  
Lei Lu ◽  
Li Feng ◽  
Alexander Warmuth ◽  
Astrid M. Veronig ◽  
Jing Huang ◽  
...  

Abstract Magnetic reconnection is a fundamental physical process converting magnetic energy into not only plasma energy but also particle energy in various astrophysical phenomena. In this Letter, we show a unique data set of a solar flare where various plasmoids were formed by a continually stretched current sheet. Extreme ultraviolet images captured reconnection inflows, outflows, and particularly the recurring plasma blobs (plasmoids). X-ray images reveal nonthermal emission sources at the lower end of the current sheet, presumably as large plasmoids with a sufficiently amount of energetic electrons trapped in them. In the radio domain, an upward, slowly drifting pulsation structure, followed by a rare pair of oppositely drifting structures, was observed. These structures are supposed to map the evolution of the primary and the secondary plasmoids formed in the current sheet. Our results on plasmoids at different locations and scales shed important light on the dynamics, plasma heating, particle acceleration, and transport processes in the turbulent current sheet and provide observational evidence for the cascading magnetic reconnection process.



2022 ◽  
Vol 924 (1) ◽  
pp. L19
Author(s):  
Cristian Vega ◽  
Stanislav Boldyrev ◽  
Vadim Roytershteyn ◽  
Mikhail Medvedev

Abstract In a collisionless plasma, the energy distribution function of plasma particles can be strongly affected by turbulence. In particular, it can develop a nonthermal power-law tail at high energies. We argue that turbulence with initially relativistically strong magnetic perturbations (magnetization parameter σ ≫ 1) quickly evolves into a state with ultrarelativistic plasma temperature but mildly relativistic turbulent fluctuations. We present a phenomenological and numerical study suggesting that in this case, the exponent α in the power-law particle-energy distribution function, f(γ)d γ ∝ γ −α d γ, depends on magnetic compressibility of turbulence. Our analytic prediction for the scaling exponent α is in good agreement with the numerical results.



2021 ◽  
Author(s):  
Anze Zaloznik ◽  
Matthew J Baldwin ◽  
Russell P Doerner ◽  
Gregory de Temmerman ◽  
Richard A Pitts

Abstract Hydrogen isotope co-deposition with Be eroded from the first wall is expected to be the main fusion fuel retention mechanism in ITER. Since good fuel accounting is crucial for economic and safety reasons, reliable predictions of hydrogen isotope retention are needed. This study builds upon the well-established empirical De Temmerman scaling law [1] that predicts D/Be ratios in co-deposited layers based on deposition temperature, deposition rate, and deuterium particle energy. Expanding the data used in the original development of the scaling law with an additional dataset obtained with more recent measurements using a different technique to the original De Temmerman approach, allows us to obtain new values for free parameters and improve the prediction capabilities of the new scaling law. In an effort to improve the model even further, scaling with D2 background pressure was included and a new two-term model derived, describing D retention in low- and high-energy traps separately.



2021 ◽  
Vol 3 (6) ◽  
pp. 76-83
Author(s):  
E. A. Thompson ◽  
I. O. Akpan ◽  
C. A. Thompson

In this study, we solve the non-relativistic radial part of the Schrödinger wave equation for the superposition of the Hulthen with spin-orbit plus adjusted Coulomb potential (SHSC) potential using the Nikiforov-Uvarov (NU) method for arbitrary states. The Hulthen with spin-orbit plus adjusted Coulomb (SHSC) potential is the simplest potential field for a nuclear system and has been used to obtain the single particle energy spectrum for both nucleon species orbiting a closed nuclear core. We also obtained in this study the corresponding single particle normalized wave function expressed in terms of the Jacobi polynomial. Besides, we obtained two special cases of the energy spectra for the SHSC potential.



2021 ◽  
Vol 13 (3) ◽  
pp. 15
Author(s):  
Josip Soln

The bicubic equation of particle limiting velocity formalism yields three solutions c1, c2 and c3, (primary, secondary and tertiary) limiting velocities in terms of the congruent parameter  which is defined in terms of m, v, and E, respectively being particle mass, velocity and energy. The bicubic equation discriminant D is given in terms of the congruent parameter z(m). When one has z2(m) ≤ 1 with the discriminant satisfying D ≤ 0 then we are talking about limiting velocities of ordinary particles. Good examples are the relativistic particles such as electron, neutrino,etc., with luminal limiting velocity c3 = c and calculated superluminal c2, and imaginary superluminal c1, all corresponding to the real particle energy. On the specific level, the situations like these, we discuss in the muon neutrino velocities with the OPERA detector and the electron velocities from the 2010 Grab Nebula Flare. The z(m) = 1 value separates the ordinary particles from novel particles, associated with D ⪰ 0 and z2 ⪰ 1 with new novel particle limiting velocity solutions c1, c2 and c3 which depend, in addition to z(m), also on the congruent angle α(m), nonlinearly related to z(m). These solutions are discussed on the newly defined sterile neutrino which here is modeled as an ordinary particle with z2 ⪯ 1 spontaneously transiting via z(m) = 1 into the modeled novel sterile neutrino with z2 ⪰ 1. All ordinary and novel particles limiting velocities carry real particle energies; the ordinary particle limiting velocity solutions being in quadratic forms, while the novel particle limiting velocity solutions being respectively, in quadratic complex form, linear complex form, and just congruent angle α complex quadratic form.



2021 ◽  
Vol 9 ◽  
Author(s):  
Kazuma Emoto ◽  
Kazunori Takahashi ◽  
Yoshinori Takao

Energy losses in a magnetic nozzle radiofrequency plasma thruster are investigated to improve the thruster efficiency and are calculated from particle energy losses in fully kinetic simulations. The simulations calculate particle energy fluxes with a vector resolution including the plasma energy lost to the dielectric wall, the plasma beam energy, and the divergent plasma energy in addition to collisional energy losses. As a result, distributions of energy losses in the thruster and the ratios of the energy losses to the input power are obtained. The simulation results show that the plasma energy lost to the dielectric is dramatically suppressed by increasing the magnetic field strength, and the ion beam energy increases instead. In addition, the divergent ion energy and collisional energy losses account for approximately 4%–12% and 30%–40%, respectively, regardless of the magnetic field strength.



2021 ◽  
Vol 923 (2) ◽  
pp. 194
Author(s):  
Alice K. Harding ◽  
Christo Venter ◽  
Constantinos Kalapotharakos

Abstract Air-Cherenkov telescopes have detected pulsations at energies above 50 GeV from a growing number of Fermi pulsars. These include the Crab, Vela, PSR B1706−44, and Geminga, with the first two having pulsed detections above 1 TeV. In some cases, there appears to be very-high-energy (VHE) emission that is an extension of the Fermi spectra to high energies, while in other cases, additional higher-energy spectral components that require a separate emission mechanism may be present. We present results of broadband spectral modeling using global magnetospheric fields and multiple emission mechanisms that include synchro-curvature (SC) and inverse Compton scattered (ICS) radiation from accelerated particles (primaries) and synchrotron self-Compton (SSC) emission from lower-energy pairs. Our models predict three distinct VHE components: SC from primaries whose high-energy tail can extend to 100 GeV, SSC from pairs that can extend to several TeV, and ICS from primary particles accelerated in the current sheet that scatter pair synchrotron radiation, which appears beyond 10 TeV. Our models suggest that H.E.S.S.-II and MAGIC have detected the high-energy tail of the primary SC component that produces the Fermi spectrum in Vela, Geminga, and PSR B1706−44. We argue that the ICS component peaking above 10 TeV from Vela has been seen by H.E.S.S. Detection of this emission component from the Crab and other pulsars is possible with the High Altitude Water Cherenkov Observatory and Cherenkov Telescope Array, and will directly measure the maximum particle energy in pulsars.



2021 ◽  
Vol 922 (2) ◽  
pp. 172
Author(s):  
Vladimir Zhdankin

Abstract Many high-energy astrophysical systems contain magnetized collisionless plasmas with relativistic particles, in which turbulence can be driven by an arbitrary mixture of solenoidal and compressive motions. For example, turbulence in hot accretion flows may be driven solenoidally by the magnetorotational instability or compressively by spiral shock waves. It is important to understand the role of the driving mechanism on kinetic turbulence and the associated particle energization. In this work, we compare particle-in-cell simulations of solenoidally driven turbulence with similar simulations of compressively driven turbulence. We focus on plasma that has an initial beta of unity, relativistically hot electrons, and varying ion temperature. Apart from strong large-scale density fluctuations in the compressive case, the turbulence statistics are similar for both drives, and the bulk plasma is described reasonably well by an isothermal equation of state. We find that nonthermal particle acceleration is more efficient when turbulence is driven compressively. In the case of relativistically hot ions, both driving mechanisms ultimately lead to similar power-law particle energy distributions, but over a different duration. In the case of nonrelativistic ions, there is significant nonthermal particle acceleration only for compressive driving. Additionally, we find that the electron-to-ion heating ratio is less than unity for both drives, but takes a smaller value for compressive driving. We demonstrate that this additional ion energization is associated with the collisionless damping of large-scale compressive modes via perpendicular electric fields.



Sign in / Sign up

Export Citation Format

Share Document