scholarly journals Unpolarized gluon distribution in the nucleon from lattice quantum chromodynamics

2021 ◽  
Vol 104 (9) ◽  
Author(s):  
Tanjib Khan ◽  
Raza Sabbir Sufian ◽  
Joseph Karpie ◽  
Christopher J. Monahan ◽  
Colin Egerer ◽  
...  
Author(s):  
Bálint Joó ◽  
Mike A. Clark

The QUDA library for optimized lattice quantum chromodynamics using GPUs, combined with a high-level application framework such as the Chroma software system, provides a powerful tool for computing quark propagators, a key step in current calculations of hadron spectroscopy, nuclear structure, and nuclear forces. In this contribution we discuss our experiences, including performance and strong scaling of the QUDA library and Chroma on the Edge Cluster at Lawrence Livermore National Laboratory and on various clusters at Jefferson Lab. We highlight some scientific successes and consider future directions for graphics processing units in lattice quantum chromodynamics calculations.


2014 ◽  
Vol 113 (25) ◽  
Author(s):  
S. R. Beane ◽  
E. Chang ◽  
S. Cohen ◽  
W. Detmold ◽  
H. W. Lin ◽  
...  

2017 ◽  
Vol 96 (11) ◽  
Author(s):  
Michael L. Wagman ◽  
Frank Winter ◽  
Emmanuel Chang ◽  
Zohreh Davoudi ◽  
William Detmold ◽  
...  

2013 ◽  
Vol 22 (12) ◽  
pp. 1330030 ◽  
Author(s):  
BASTIAN B. BRANDT

This review contains an overview over recent results for the electromagnetic iso-vector form factor of the pion obtained in lattice quantum chromodynamics (QCD) with dynamical fermions. Particular attention is given to the extrapolation to the physical point and an easy assessment of the control over the main systematic effects by imposing quality criteria and an associated sign code, similar to the ones used by the FLAG working group. Also included is a brief discussion of recent developments and future challenges concerning the accurate extraction of the form factor in the lattice framework.


2006 ◽  
Vol 84 (6-7) ◽  
pp. 661-668
Author(s):  
A M Abdel-Rehim ◽  
R Lewis

The pion form factor offers insight into the transition from perturbative to nonperturbative quantum chromodynamics (QCD), and is of current experimental interest. Twisted-mass lattice QCD is a method for eliminating unphysical zero modes from Wilson lattice simulations; it also allows for removal of the leading lattice spacing artifacts through a momentum-averaging prescription. In our study of the pion form factor, we performed the first explicit computation with momentum averaging in twisted-mass lattice QCD, and the first use of the GMRES-DR algorithm for twisted fermion matrix inversion.PACS No.: 12.38.Gc


Sign in / Sign up

Export Citation Format

Share Document