Scalar bound states and dynamical symmetry breaking

1975 ◽  
Vol 12 (10) ◽  
pp. 3230-3236 ◽  
Author(s):  
J. Lemmon ◽  
K. T. Mahanthappa
2014 ◽  
Vol 29 (31) ◽  
pp. 1450192
Author(s):  
Renata Jora ◽  
Joseph Schechter

We discuss the supersymmetric standard model from the perspective that the up and down Higgs supermultiplets are composite states. We show that a Higgs multiplet in which the scalar states are bound states of two squarks and the corresponding Higgsinos are bound states of a quark and a squark has the correct supersymmetry transformations and may lead to an alternative model which contains additional effective operators and which displays dynamical symmetry breaking. We describe this model through an effective Higgs potential which by itself may lead to the correct mass of 125.9 GeV for the lightest Higgs boson and to other neutral scalar masses respecting the experimental constraints.


2012 ◽  
Vol 27 (26) ◽  
pp. 1250156 ◽  
Author(s):  
A. DOFF ◽  
A. A. NATALE

The gauge symmetry breaking in some versions of 3-3-1 models can be implemented dynamically because at the scale of a few TeVs the U(1)X coupling constant becomes strong. In this work, we consider the dynamical symmetry breaking in a minimal SU(3) TC × SU(3)L × U(1)X model, where we propose a new scheme to cancel the chiral anomalies, including two-index symmetric (6) technifermions, which incorporates naturally the walking behavior in the Technicolor (TC) sector. The composite scalar content of the model is minimal and all the symmetry breaking is implemented by a multiplet of technifermions. The choice of TC representations not only provides the anomaly cancelation with a walking behavior, but is crucial to promote the model's full dynamical symmetry breaking. We consider the dynamical generation of technigluon masses and, depending on the 3-3-1 symmetry breaking scale (μ331), we verify that the technigluon mass is strongly linked to the Z′ mass scale, for instance, if μ331 = 1 TeV , we have MZ′ > 1 TeV only if M TG < 350 GeV .


Sign in / Sign up

Export Citation Format

Share Document