Constraints on stress-energy perturbations in general relativity

1985 ◽  
Vol 31 (2) ◽  
pp. 283-289 ◽  
Author(s):  
Jennie Traschen
Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


Author(s):  
Roman Baudrimont

This paper is to summarize the involvement of the stress energy tensor in the study of fluid mechanics. In the first part we will see the implication that carries the stress energy tensor in the framework of general relativity. In the second part, we will study the stress energy tensor under the mechanics of perfect fluids, allowing us to lead third party in the case of Newtonian fluids, and in the last part we will see that it is possible to define space-time as a no-Newtonian fluids.


2020 ◽  
Vol 29 (14) ◽  
pp. 2043029
Author(s):  
Marius Oltean ◽  
Hossein Bazrafshan Moghaddam ◽  
Richard J. Epp

Quasilocal definitions of stress-energy–momentum—that is, in the form of boundary densities (in lieu of local volume densities) — have proven generally very useful in formulating and applying conservation laws in general relativity. In this Essay, we take a basic look into applying these to cosmology, specifically using the Brown–York quasilocal stress-energy–momentum tensor for matter and gravity combined. We compute this tensor and present some simple results for a flat FLRW spacetime with a perfect fluid matter source. We emphasize the importance of the vacuum energy, which is almost universally underappreciated (and usually “subtracted”), and discuss the quasilocal interpretation of the cosmological constant.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
D. D. Pawar ◽  
V. R. Patil ◽  
S. N. Bayaskar

This paper deals with the cosmological models for the static spherically symmetric spacetime for perfect fluid with anisotropic stress energy tensor in general relativity by introducing the generating functions g(r) and w(r) and also discussing their physical and geometric properties.


2006 ◽  
Vol 15 (07) ◽  
pp. 959-989 ◽  
Author(s):  
M. LECLERC

We deal with the question, under which circumstances the canonical Noether stress-energy tensor is equivalent to the gravitational (Hilbert) tensor for general matter fields under the influence of gravity. In the framework of general relativity, the full equivalence is established for matter fields that do not couple to the metric derivatives. Spinor fields are included into our analysis by reformulating general relativity in terms of tetrad fields, and the case of Poincaré gauge theory, with an additional, independent Lorentz connection, is also investigated. Special attention is given to the flat limit, focusing on the expressions for the matter field energy (Hamiltonian). The Dirac–Maxwell system is investigated in detail, with special care given to the separation of free (kinetic) and interaction (or potential) energy. Moreover, the stress-energy tensor of the gravitational field itself is briefly discussed.


2020 ◽  
Author(s):  
PierGianLuca Porta Mana

This note provides a short guide to dimensional analysis in Lorentzian and general relativity and in differential geometry. It tries to revive Dorgelo and Schouten's notion of 'intrinsic' or 'absolute' dimension of a tensorial quantity. The intrinsic dimension is independent of the dimensions of the coordinates and expresses the physical and operational meaning of a tensor. The dimensional analysis of several important tensors and tensor operations is summarized. In particular it is shown that the components of a tensor need not have all the same dimension, and that the Riemann (once contravariant and thrice covariant), Ricci (twice covariant), and Einstein (twice covariant) curvature tensors are dimensionless. The relation between dimension and operational meaning for the metric and stress-energy-momentum tensors is discussed; and the possible conventions for the dimensions of these two tensors and of Einstein's constant $\kappa$, including the curious possibility $\kappa = 8\pi G$ without $c$ factors, are reviewed.


Sign in / Sign up

Export Citation Format

Share Document