stress energy
Recently Published Documents


TOTAL DOCUMENTS

530
(FIVE YEARS 137)

H-INDEX

38
(FIVE YEARS 6)

Author(s):  
Jonathan Gratus

Abstract Since a classical charged point particle radiates energy and momentum it is argued that there must be a radiation reaction force. Here we present an action for the Maxwell-Lorentz without self interactions model, where each particle only responds to the fields of the other charged particles. The corresponding stress-energy tensor automatically conserves energy and momentum in Minkowski and other appropriate spacetimes. Hence there is no need for any radiation reaction.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 505
Author(s):  
Musavvir Ali ◽  
Mohammad Salman ◽  
Mohd Bilal

The motive of the current article is to study and characterize the geometrical and physical competency of the conharmonic curvature inheritance (Conh CI) symmetry in spacetime. We have established the condition for its relationship with both conformal motion and conharmonic motion in general and Einstein spacetime. From the investigation of the kinematical and dynamical properties of the conformal Killing vector (CKV) with the Conh CI vector admitted by spacetime, it is found that they are quite physically applicable in the theory of general relativity. We obtain results on the symmetry inheritance for physical quantities (μ,p,ui,σij,η,qi ) of the stress-energy tensor in imperfect fluid, perfect fluid and anisotropic fluid spacetimes. Finally, we prove that the conharmonic curvature tensor of a perfect fluid spacetime will be divergence-free when a Conh CI vector is also a CKV.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Ana Alonso-Serrano ◽  
Erickson Tjoa ◽  
Luis J. Garay ◽  
Eduardo Martín-Martínez

Abstract We study the relationship between the quantization of a massless scalar field on the two-dimensional Einstein cylinder and in a spacetime with a time machine. We find that the latter picks out a unique prescription for the state of the zero mode in the Einstein cylinder. We show how this choice arises from the computation of the vacuum Wightman function and the vacuum renormalized stress-energy tensor in the time-machine geometry. Finally, we relate the previously proposed regularization of the zero mode state as a squeezed state with the time-machine warp parameter, thus demonstrating that the quantization in the latter regularizes the quantization in an Einstein cylinder.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Shamit Kachru ◽  
Manki Kim ◽  
Liam McAllister ◽  
Max Zimet

Abstract We analyze the de Sitter construction of [1] using ten-dimensional supergravity, finding exact agreement with the four-dimensional effective theory. Starting from the fermionic couplings in the D7-brane action, we derive the ten-dimensional stress-energy due to gaugino condensation on D7-branes. We demonstrate that upon including this stress-energy, as well as that due to anti-D3-branes, the ten-dimensional equations of motion require the four-dimensional curvature to take precisely the value determined by the four-dimensional effective theory of [1].


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
David M. Ramirez

Abstract Recent work has suggested an intriguing relation between quantum chaos and energy density correlations, known as pole skipping. We investigate this relationship in two dimensional conformal field theories on a finite size spatial circle by studying the thermal energy density retarded two-point function on a torus. We find that the location ω* = iλ of pole skipping in the complex frequency plane is determined by the central charge and the stress energy one-point function 〈T〉 on the torus. In addition, we find a bound on λ in c > 1 compact, unitary CFT2s identical to the chaos bound, λ ≤ 2πT. This bound is saturated in large c CFT2s with a sparse light spectrum, as quantified by [1], for all temperatures above the dual Hawking-Page transition temperature.


2021 ◽  
Author(s):  
Dale. R. Koehler

Abstract It is shown in the present work that the distorted-space model of matter can describe conventional force-constants and transition-mediator structures. We use the verbiage “distorted” to communicate the concept of “energetic warping” to distinguish “spatial warping” from “classical matter warping”, although the concept of “matter” is in fact, in the present context, the “geometric distortion energy” of the spatial manifold itself without a classical “matter stress-energy source”. The “distorted-geometry” structures exhibit non-Newtonian features wherein the hole or core-region fields of the structures are energetically-repulsive (negative pressure), do not behave functionally in an r-4 manner and terminate at zero at the radial origin (no singularity). Near the core of the distortion the magnetic fields dominate the energy-densities of the structures thereby departing from classical particle-structure descriptions. Black-body radiation-emission and structural modeling lead to a description of transition dynamics and photonic entities.


Sign in / Sign up

Export Citation Format

Share Document