scholarly journals Binary black hole coalescence in the large-mass-ratio limit: The hyperboloidal layer method and waveforms at null infinity

2011 ◽  
Vol 84 (8) ◽  
Author(s):  
Sebastiano Bernuzzi ◽  
Alessandro Nagar ◽  
Anıl Zenginoğlu
2007 ◽  
Vol 3 (S245) ◽  
pp. 63-66 ◽  
Author(s):  
T. J. Cox ◽  
J. Younger ◽  
L. Hernquist ◽  
P. F. Hopkins

AbstractThe hierarchical formation of structure suggests that dark halos, and the galaxies they host, are shaped by their merging history. While the idea that mergers between galaxies of equal mass, i.e., major merger, produce elliptical galaxies has received considerable attention, he galaxies that result from minor merger, i.e., mergers between galaxies with a large mass ratio, is much less understood. We have performed a large number of numerical simulations of minor mergers, including cooling, star formation, and black hole growth in order to study this process in more detail. This talk will present some preliminary results of this study, and in particular, the morphology and kinematics of minor merger remnants.


2007 ◽  
Vol 24 (12) ◽  
pp. S109-S123 ◽  
Author(s):  
Alessandro Nagar ◽  
Thibault Damour ◽  
Angelo Tartaglia

1994 ◽  
Vol 422 ◽  
pp. 823 ◽  
Author(s):  
D. R. Gies ◽  
A. W. Fullerton ◽  
C. T. Bolton ◽  
W. G., Jr. Bagnuolo ◽  
M. E. Hahula ◽  
...  

2019 ◽  
Vol 28 (14) ◽  
pp. 1944001 ◽  
Author(s):  
Paolo Pani ◽  
Andrea Maselli

The tidal deformability of a self-gravitating object leaves an imprint on the gravitational-wave signal of an inspiral which is paramount to measure the internal structure of the binary components. We unveil here a surprisingly unnoticed effect: in the extreme mass-ratio limit the tidal Love number of the central object (i.e. the quadrupole moment induced by the tidal field of its companion) affects the gravitational waveform at the leading order in the mass ratio. This effect acts as a magnifying glass for the tidal deformability of supermassive objects but was so far neglected, probably because the tidal Love numbers of a black hole (the most natural candidate for a compact supermassive object) are identically zero. We argue that extreme mass-ratio inspirals detectable by the future laser interferometric space antenna (LISA) mission might place constraints on the tidal Love numbers of the central object which are roughly eight orders of magnitude more stringent than current ones on neutron stars, potentially probing all models of black hole mimickers proposed so far.


2020 ◽  
Vol 29 (17) ◽  
Author(s):  
Ying‐jie Kang ◽  
Ling‐yun Peng ◽  
Peng Pan ◽  
Hai‐shen Wang ◽  
Gen‐qi Xiao

Sign in / Sign up

Export Citation Format

Share Document