scholarly journals Jet quenching in strongly coupled plasma

2014 ◽  
Vol 90 (2) ◽  
Author(s):  
Paul M. Chesler ◽  
Krishna Rajagopal
2011 ◽  
Vol 20 (07) ◽  
pp. 1610-1615 ◽  
Author(s):  
FRANCESCO D'ERAMO ◽  
HONG LIU ◽  
KRISHNA RAJAGOPAL

We analyze the transverse momentum broadening in the absence of radiation of an energetic parton propagating through quark-gluon plasma via Soft Collinear Effective Theory (SCET). We show that the probability for picking up transverse momentum k⊥ is given by the Fourier transform of the expectation value of two transversely separated light-like path-ordered Wilson lines. The subtleties about the ordering of operators do not change the [Formula: see text] value for the strongly coupled plasma of [Formula: see text] SYM theory.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tobias Kroker ◽  
Mario Großmann ◽  
Klaus Sengstock ◽  
Markus Drescher ◽  
Philipp Wessels-Staarmann ◽  
...  

AbstractPlasma dynamics critically depends on density and temperature, thus well-controlled experimental realizations are essential benchmarks for theoretical models. The formation of an ultracold plasma can be triggered by ionizing a tunable number of atoms in a micrometer-sized volume of a 87Rb Bose-Einstein condensate (BEC) by a single femtosecond laser pulse. The large density combined with the low temperature of the BEC give rise to an initially strongly coupled plasma in a so far unexplored regime bridging ultracold neutral plasma and ionized nanoclusters. Here, we report on ultrafast cooling of electrons, trapped on orbital trajectories in the long-range Coulomb potential of the dense ionic core, with a cooling rate of 400 K ps−1. Furthermore, our experimental setup grants direct access to the electron temperature that relaxes from 5250 K to below 10 K in less than 500 ns.


2006 ◽  
Vol 39 (17) ◽  
pp. 4347-4351 ◽  
Author(s):  
J M Taccetti ◽  
R P Shurter ◽  
J P Roberts ◽  
J F Benage ◽  
B Graden ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document