transverse momentum
Recently Published Documents


TOTAL DOCUMENTS

2593
(FIVE YEARS 425)

H-INDEX

104
(FIVE YEARS 12)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Stefan Höche ◽  
Stephen Mrenna ◽  
Shay Payne ◽  
Christian Tobias Preuss ◽  
Peter Skands

We discuss and illustrate the properties of several parton-shower algorithms available in Pythia and Vincia, in the context of Higgs production via vector boson fusion (VBF). In particular, the distinctive colour topology of VBF processes allows to define observables sensitive to the coherent radiation pattern of additional jets. We study a set of such observables, using the Vincia sector-antenna shower as our main reference, and contrast it to Pythia's transverse-momentum-ordered DGLAP shower as well as Pythia's dipole-improved shower. We then investigate the robustness of these predictions as successive levels of higher-order perturbative matrix elements are incorporated, including next-to-leading-order matched and tree-level merged calculations, using Powheg Box and Sherpa respectively to generate the hard events.


Author(s):  
Glauber Sampaio dos Santos ◽  
Gustavo Gil Da Silveira ◽  
Magno Valério Trindade Machado

Abstract An analysis of prompt photon production in high energy nuclear collisions at the LHC is performed within the parton saturation picture taking into account the updated phenomenological color dipole models. Comparison between $\langle N_{coll}\rangle$ scaling for hard scattering in heavy-ion collisions and the $N_{part}$-scaling based on geometric scaling arguments has been done. The predictions are parameter free in the first case whereas a dependence on the constant of proportionality $\kappa$ between the number of participants and the nuclear saturation scale appears in the second case. This parameter has been analyzed in the prompt photon spectrum at small transverse momentum even though no fitting procedure was performed. Results are confronted with the measurements made by the ALICE, ATLAS, and CMS experiments in terms of photon transverse momentum at different rapidity bins. We show that the prompt photon production exhibits distinct scalings in $AA$ events associated to geometrical properties of the collision and can be properly addressed in the color dipole formalism. Based on the $N_{part}$-scaling, an analytical parametrization for the invariant cross section is provided and employed to predict the $x_T$-scaling in measurements. For $\kappa$ of order of unit the theoretical scaling curve correctly describes data in the range $x_T\leq 5\times 10^{-2}$.


Universe ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 31
Author(s):  
Li-Li Li ◽  
Fu-Hu Liu ◽  
Muhammad Waqas ◽  
Muhammad Ajaz

We analyzed the transverse momentum spectra of positively and negatively charged pions (π+ and π−), positively and negatively charged kaons (K+ and K−), protons and antiprotons (p and p¯), as well as ϕ produced in mid-(pseudo)rapidity region in central nucleus–nucleus (AA) collisions over a center-of-mass energy range from 2.16 to 2760 GeV per nucleon pair. The transverse momentum of the considered particle is regarded as the joint contribution of two participant partons which obey the modified Tsallis-like transverse momentum distribution and have random azimuths in superposition. The calculation of transverse momentum distribution of particles is performed by the Monte Carlo method and compared with the experimental data measured by international collaborations. The excitation functions of effective temperature and other parameters are obtained in the considered energy range. With the increase of collision energy, the effective temperature parameter increases quickly and then slowly. The boundary appears at around 5 GeV, which means the change of reaction mechanism and/or generated matter.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Wen Han Chiu ◽  
Zhen Liu ◽  
Matthew Low ◽  
Lian-Tao Wang

Abstract The measurement of the arrival time of a particle, such as a lepton, a photon, or a pion, reaching the detector provides valuable information. A similar measurement for a hadronic final state, however, is much more challenging as one has to extract the relevant information from a collection of particles. In this paper, we explore various possibilities in defining the time of a jet through the measurable arrival times of the jet constituents. We find that a definition of jet time based on a transverse momentum weighted sum of the times of the constituents has the best performance. For prompt jets, the performance depends on the jet trajectory. For delayed jets, the performance depends on the trajectory of the jet, the trajectory of the mother particle, and the location of the displaced vertex. Compared to the next-best-performing jet time definition, the transverse momentum weighted sum has roughly a factor of ten times better jet time resolution. We give a detailed discussion of the relevant effects and characterize the full geometrical dependence of the performance. These results highlight the critical importance of using a proper definition of jet time with its corresponding detector-dependent calibration and the exciting possibility of deepening our understanding of jets in the time domain.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
M. I. Abdulhamid ◽  
M. A. Al-Mashad ◽  
A. Bermudez Martinez ◽  
G. Bonomelli ◽  
I. Bubanja ◽  
...  

AbstractThe azimuthal correlation, $$\Delta \phi _{12}$$ Δ ϕ 12 , of high transverse momentum jets in pp collisions at $$\sqrt{s}=13$$ s = 13  TeV is studied by applying PB-TMD distributions to NLO calculations via MCatNLO together with the PB-TMD parton shower. A very good description of the cross section as a function of $$\Delta \phi _{12}$$ Δ ϕ 12 is observed. In the back-to-back region of $${\Delta \phi _{12}}\rightarrow \pi $$ Δ ϕ 12 → π , a very good agreement is observed with the PB-TMD Set 2 distributions while significant deviations are obtained with the PB-TMD Set 1 distributions. Set 1 uses the evolution scale while Set 2 uses transverse momentum as an argument in $$\alpha _\mathrm {s}$$ α s , and the above observation therefore confirms the importance of an appropriate soft-gluon coupling in angular ordered parton evolution. The total uncertainties of the predictions are dominated by the scale uncertainties of the matrix element, while the uncertainties coming from the PB-TMDs and the corresponding PB-TMD shower are very small. The $$\Delta \phi _{12}$$ Δ ϕ 12 measurements are also compared with predictions using MCatNLO together Pythia8, illustrating the importance of details of the parton shower evolution.


2022 ◽  
Vol 258 ◽  
pp. 05002
Author(s):  
Andreas Ipp ◽  
David I. Müller ◽  
Daniel Schuh

In these proceedings, we report on our numerical lattice simulations of partons traversing the boost-invariant, non-perturbative glasma as created at the early stages of collisions at RHIC and LHC. Since these highly energetic partons are produced from hard scatterings during heavy-ion collisions, they are already affected by the first stage of the medium's time evolution, the glasma, which is the pre-equilibrium precursor state of the quark-gluon plasma. We find that partons quickly accumulate transverse momentum up to the saturation momentum during the glasma stage. Moreover, we observe an interesting anisotropy in transverse momentum broadening of partons with larger broadening in the rapidity than in the azimuthal direction. Its origin can be related to correlations among the longitudinal color-electric and color-magnetic flux tubes in the initial state of the glasma. We compare these observations to the semi-analytic results obtained by a weak-field approximation, where we also find such an anisotropy in a parton's transverse momentum broadening.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Luca Buonocore ◽  
Massimiliano Grazzini ◽  
Jürg Haag ◽  
Luca Rottoli

AbstractWe consider the associated production of a vector or Higgs boson with a jet in hadronic collisions. When the transverse momentum $$q_T$$ q T of the boson-jet system is much smaller than its invariant mass Q, the QCD perturbative expansion is affected by large logarithmic terms that must be resummed to all orders. We discuss the all-order resummation structure of the logarithmically enhanced contributions up to next-to-leading logarithmic accuracy. Resummation is performed at the differential level with respect to the kinematical variables of the boson-jet system. Soft-parton radiation produces azimuthal correlations that are fully accounted for in our framework. We present explicit analytical results for the resummation coefficients up to next-to-leading order and next-to-leading logarithmic accuracy, that include the exact dependence on the jet radius.


Sign in / Sign up

Export Citation Format

Share Document