scholarly journals Critical exponents in coupled phase-oscillator models on small-world networks

2020 ◽  
Vol 102 (6) ◽  
Author(s):  
Ryosuke Yoneda ◽  
Kenji Harada ◽  
Yoshiyuki Y. Yamaguchi
2007 ◽  
Vol 18 (08) ◽  
pp. 1251-1261 ◽  
Author(s):  
EDINA M. S. LUZ ◽  
F. W. S. LIMA

On directed small-world networks the majority-vote model with noise is now studied through Monte Carlo simulations. In this model, the order-disorder phase transition of the order parameter is well defined. We calculate the value of the critical noise parameter qc for several values of rewiring probability p of the directed small-world network. The critical exponents β/ν, γ/ν and 1/ν were calculated for several values of p.


Author(s):  
Stefan Thurner ◽  
Rudolf Hanel ◽  
Peter Klimekl

Understanding the interactions between the components of a system is key to understanding it. In complex systems, interactions are usually not uniform, not isotropic and not homogeneous: each interaction can be specific between elements.Networks are a tool for keeping track of who is interacting with whom, at what strength, when, and in what way. Networks are essential for understanding of the co-evolution and phase diagrams of complex systems. Here we provide a self-contained introduction to the field of network science. We introduce ways of representing and handle networks mathematically and introduce the basic vocabulary and definitions. The notions of random- and complex networks are reviewed as well as the notions of small world networks, simple preferentially grown networks, community detection, and generalized multilayer networks.


2021 ◽  
Vol 144 ◽  
pp. 110745
Author(s):  
Ankit Mishra ◽  
Jayendra N. Bandyopadhyay ◽  
Sarika Jalan

2005 ◽  
Vol 72 (6) ◽  
Author(s):  
J. P. L. Hatchett ◽  
N. S. Skantzos ◽  
T. Nikoletopoulos

Sign in / Sign up

Export Citation Format

Share Document