small world network
Recently Published Documents


TOTAL DOCUMENTS

457
(FIVE YEARS 76)

H-INDEX

35
(FIVE YEARS 5)

Author(s):  
Ruslan I Mukhamadiarov ◽  
Shengfeng Deng ◽  
Shannon R. Serrao ◽  
Priyanka Priyanka ◽  
Lauren M Childs ◽  
...  

Abstract We employ individual-based Monte Carlo computer simulations of a stochastic SEIR model variant on a two-dimensional Newman-Watts small-world network to investigate the control of epidemic outbreaks through periodic testing and isolation of infectious individuals, and subsequent quarantine of their immediate contacts. Using disease parameters informed by the COVID-19 pandemic, we investigate the effects of various crucial mitigation features on the epidemic spreading: fraction of the infectious population that is identifiable through the tests; testing frequency; time delay between testing and isolation of positively tested individuals; and the further time delay until quarantining their contacts as well as the quarantine duration. We thus determine the required ranges for these intervention parameters to yield effective control of the disease through both considerable delaying the epidemic peak and massively reducing the total number of sustained infections.


2021 ◽  
Vol 104 (5) ◽  
Author(s):  
Tayebe Nikfard ◽  
Yahya Hematyar Tabatabaei ◽  
Farhad Shahbazi

Author(s):  
Ernesto Zambrano-Serrano ◽  
Jesus M. Munoz-Pacheco ◽  
Andrés Anzo-Hernández ◽  
Olga G. Félix-Beltrán ◽  
Diana K. Guevara-Flores

2021 ◽  
Vol 2099 (1) ◽  
pp. 012055
Author(s):  
N G Scherbakova ◽  
S V Bredikhin

Abstract The analysis of networks of collaboration between scientists reveals features of academic communities that help in understanding the specifics of collaborative scientific work and identifying the notable researchers. In these networks, the set of nodes consists of authors and there exists a link between two authors if they have coauthored one or more papers. This article presents an analysis of the co-authorship network based on bibliometric data retrieved from the distributed economic database. Here we use the simple network model without taking into account the strength of collaborative ties. The data were analyzed using statistical techniques in order to get such parameters as the number of papers per author, the number of authors per paper, the average number of coauthors per author and collaboration indices. We show that the largest component occupies near 90 % of the network and the node degree distribution follows a power-law. The study of typical distances between nodes and the degree of clustering makes it possible to classify the network as a ‘small world’ network.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2547
Author(s):  
Xiang Ji ◽  
Wanpeng Zhang ◽  
Shaofei Chen ◽  
Junren Luo ◽  
Lina Lu ◽  
...  

This study addressed a problem of rapid velocity consensus within a swarm of unmanned aerial vehicles. Our analytical framework was based on tools using matrix theory and algebraic graph theory. We established connections between algebraic connectivity and the speed of converging on a velocity. The relationship between algebraic connectivity and communication cost was established. To deal with the trade-off among algebraic connectivity, convergence speed and communication cost, we propose a distributed small world network construction method. The small world network characteristics expedite the convergence speed toward consensus in the unmanned aerial vehicle swarm. Eventually, our method greatly sped up the consensus velocities in the unmanned aerial vehicle swarms at a lower communication cost than other methods required.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marvin Du

AbstractContinuous deterministic models have been widely used to guide non-pharmaceutical interventions (NPIs) to combat the spread of the coronavirus disease 2019 (COVID-19). The validity of continuous deterministic models is questionable because they fail to incorporate two important characteristics of human society: high clustering and low degree of separation. A small-world network model is used to study the spread of COVID-19, thus providing more reliable information to provide guidance to mitigate it. Optimal timing of lockdown and reopening society is investigated so that intervention measures to combat COVID-19 can work more efficiently. Several important findings are listed as follows: travel restrictions should be implemented as soon as possible; if ‘flattening the curve’ is the purpose of the interventions, measures to reduce community transmission need not be very strict so that the lockdown can be sustainable; the fraction of the population that is susceptible, rather than the levels of daily new cases and deaths, is a better criterion to decide when to reopen society; and society can be safely reopened when the susceptible population is still as high as 70%, given that the basic reproduction number is 2.5. Results from small-world network models can be significantly different than those from continuous deterministic models, and the differences are mainly due to a major shortfall intrinsically embedded in the continuous deterministic models. As such, small-world network models provide meaningful improvements over continuous deterministic models and therefore should be used in the mathematical modeling of infection spread to guide the present COVID-19 interventions. For future epidemics, the present framework of mathematical modeling can be a better alternative to continuous deterministic models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leonardo N. Ferreira ◽  
Inho Hong ◽  
Alex Rutherford ◽  
Manuel Cebrian

AbstractProtest diffusion is a cascade process that can spread over different regions of the planet. The way and the extension that this phenomenon can occur is still not properly understood. Here, we empirically investigate this question using protest data from GDELT and ICEWS, two of the most extensive and longest-running data sets freely available. We divide the globe into grid cells and construct a temporal network for each data set where nodes represent cells and links are established between nodes if their protest events co-occur. We show that the temporal networks are small-world, indicating that the cells are directly linked or separated by a few steps on average. Furthermore, the average path lengths are decreasing through the years, which suggests that the world is becoming “smaller”. The persistent temporal hubs present in both data sets indicate that protests can spread faster through the hubs. This topological feature is consistent with the hypothesis that protests can quickly diffuse from one region to any other part of the globe.


PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0251993
Author(s):  
Yan Sun ◽  
Haixing Zhao ◽  
Jing Liang ◽  
Xiujuan Ma

Entropy is an important index for describing the structure, function, and evolution of network. The existing research on entropy is primarily applied to undirected networks. Compared with an undirected network, a directed network involves a special asymmetric transfer. The research on the entropy of directed networks is very significant to effectively quantify the structural information of the whole network. Typical complex network models include nearest-neighbour coupling network, small-world network, scale-free network, and random network. These network models are abstracted as undirected graphs without considering the direction of node connection. For complex networks, modeling through the direction of network nodes is extremely challenging. In this paper, based on these typical models of complex network, a directed network model considering node connection in-direction is proposed, and the eigenvalue entropies of three matrices in the directed network is defined and studied, where the three matrices are adjacency matrix, in-degree Laplacian matrix and in-degree signless Laplacian matrix. The eigenvalue-based entropies of three matrices are calculated in directed nearest-neighbor coupling, directed small world, directed scale-free and directed random networks. Through the simulation experiment on the real directed network, the result shows that the eigenvalue entropy of the real directed network is between the eigenvalue entropy of directed scale-free network and directed small-world network.


Sign in / Sign up

Export Citation Format

Share Document