scholarly journals Erratum: Three-body interactions improve contact prediction within direct-coupling analysis [Phys. Rev. E 96 , 052405 (2017)]

2021 ◽  
Vol 104 (1) ◽  
Author(s):  
Michael Schmidt ◽  
Kay Hamacher
RNA ◽  
2020 ◽  
Vol 26 (5) ◽  
pp. 637-647 ◽  
Author(s):  
Francesca Cuturello ◽  
Guido Tiana ◽  
Giovanni Bussi

2017 ◽  
Author(s):  
Tian-ming Zhou ◽  
Sheng Wang ◽  
Jinbo Xu

AbstractIntra-protein residue-level contact prediction has drawn a lot of attentions in recent years and made very good progress, but much fewer methods are dedicated to inter-protein contact prediction, which are important for understanding how proteins interact at structure and residue level. Direct coupling analysis (DCA) is popular for intra-protein contact prediction, but extending it to inter-protein contact prediction is challenging since it requires too many interlogs (i.e., interacting homologs) to be effective, which cannot be easily fulfilled especially for a putative interacting protein pair in eukaryotes. We show that deep learning, even trained by only intra-protein contact maps, works much better than DCA for inter-protein contact prediction. We also show that a phylogeny-based method can generate a better multiple sequence alignment for eukaryotes than existing genome-based methods and thus, lead to better inter-protein contact prediction. Our method shall be useful for protein docking, protein interaction prediction and protein interaction network construction.


2020 ◽  
Vol 16 (3) ◽  
pp. e1007630
Author(s):  
Barbara Bravi ◽  
Riccardo Ravasio ◽  
Carolina Brito ◽  
Matthieu Wyart

2012 ◽  
Vol 102 (3) ◽  
pp. 250a ◽  
Author(s):  
Faruck Morcos ◽  
Andrea Pagnini ◽  
Bryan Lunt ◽  
Arianna Bertolino ◽  
Debora Marks ◽  
...  

Author(s):  
Edwin Rodriguez Horta ◽  
Martin Weigt

AbstractCoevolution-based contact prediction, either directly by coevolutionary couplings resulting from global statistical sequence models or using structural supervision and deep learning, has found widespread application in protein-structure prediction from sequence. However, one of the basic assumptions in global statistical modeling is that sequences form an at least approximately independent sample of an unknown probability distribution, which is to be learned from data. In the case of protein families, this assumption is obviously violated by phylogenetic relations between protein sequences. It has turned out to be notoriously difficult to take phylogenetic correlations into account in coevolutionary model learning. Here, we propose a complementary approach: we develop two strategies to randomize or resample sequence data, such that conservation patterns and phylogenetic relations are preserved, while intrinsic (i.e. structure- or function-based) coevolutionary couplings are removed. An analysis of these data shows that the strongest coevolutionary couplings, i.e. those used by Direct Coupling Analysis to predict contacts, are only weakly influenced by phylogeny. However, phylogeny-induced spurious couplings are of similar size to the bulk of coevolutionary couplings, and dissecting functional from phylogeny-induced couplings might lead to more accurate contact predictions in the range of intermediate-size couplings.The code is available at https://github.com/ed-rodh/Null_models_I_and_II.Author summaryMany homologous protein families contain thousands of highly diverged amino-acid sequences, which fold in close-to-identical three-dimensional structures and fulfill almost identical biological tasks. Global coevolutionary models, like those inferred by the Direct Coupling Analysis (DCA), assume that families can be considered as samples of some unknown statistical model, and that the parameters of these models represent evolutionary constraints acting on protein sequences. To learn these models from data, DCA and related approaches have to also assume that the distinct sequences in a protein family are close to independent, while in reality they are characterized by involved hierarchical phylogenetic relationships. Here we propose Null models for sequence alignments, which maintain patterns of amino-acid conservation and phylogeny contained in the data, but destroy any coevolutionary couplings, frequently used in protein structure prediction. We find that phylogeny actually induces spurious non-zero couplings. These are, however, significantly smaller that the largest couplings derived from natural sequences, and therefore have only little influence on the first predicted contacts. However, in the range of intermediate couplings, they may lead to statistically significant effects. Dissecting phylogenetic from functional couplings might therefore extend the range of accurately predicted structural contacts down to smaller coupling strengths than those currently used.


Sign in / Sign up

Export Citation Format

Share Document