scholarly journals From random point processes to hierarchical cavity master equations for stochastic dynamics of disordered systems in random graphs: Ising models and epidemics

2021 ◽  
Vol 104 (5) ◽  
Author(s):  
D. Machado ◽  
R. Mulet
2020 ◽  
pp. 1-14
Author(s):  
SHOTA OSADA

Abstract We prove the Bernoulli property for determinantal point processes on $ \mathbb{R}^d $ with translation-invariant kernels. For the determinantal point processes on $ \mathbb{Z}^d $ with translation-invariant kernels, the Bernoulli property was proved by Lyons and Steif [Stationary determinantal processes: phase multiplicity, bernoullicity, and domination. Duke Math. J.120 (2003), 515–575] and Shirai and Takahashi [Random point fields associated with certain Fredholm determinants II: fermion shifts and their ergodic properties. Ann. Probab.31 (2003), 1533–1564]. We prove its continuum version. For this purpose, we also prove the Bernoulli property for the tree representations of the determinantal point processes.


1977 ◽  
Vol 65 (6) ◽  
pp. 990-990
Author(s):  
I. Rubin
Keyword(s):  

2021 ◽  
Vol 34 (2) ◽  
pp. 141-173
Author(s):  
Hirofumi Osada

We explain the general theories involved in solving an infinite-dimensional stochastic differential equation (ISDE) for interacting Brownian motions in infinite dimensions related to random matrices. Typical examples are the stochastic dynamics of infinite particle systems with logarithmic interaction potentials such as the sine, Airy, Bessel, and also for the Ginibre interacting Brownian motions. The first three are infinite-dimensional stochastic dynamics in one-dimensional space related to random matrices called Gaussian ensembles. They are the stationary distributions of interacting Brownian motions and given by the limit point processes of the distributions of eigenvalues of these random matrices. The sine, Airy, and Bessel point processes and interacting Brownian motions are thought to be geometrically and dynamically universal as the limits of bulk, soft edge, and hard edge scaling. The Ginibre point process is a rotation- and translation-invariant point process on R 2 \mathbb {R}^2 , and an equilibrium state of the Ginibre interacting Brownian motions. It is the bulk limit of the distributions of eigenvalues of non-Hermitian Gaussian random matrices. When the interacting Brownian motions constitute a one-dimensional system interacting with each other through the logarithmic potential with inverse temperature β = 2 \beta = 2 , an algebraic construction is known in which the stochastic dynamics are defined by the space-time correlation function. The approach based on the stochastic analysis (called the analytic approach) can be applied to an extremely wide class. If we apply the analytic approach to this system, we see that these two constructions give the same stochastic dynamics. From the algebraic construction, despite being an infinite interacting particle system, it is possible to represent and calculate various quantities such as moments by the correlation functions. We can thus obtain quantitative information. From the analytic construction, it is possible to represent the dynamics as a solution of an ISDE. We can obtain qualitative information such as semi-martingale properties, continuity, and non-collision properties of each particle, and the strong Markov property of the infinite particle system as a whole. Ginibre interacting Brownian motions constitute a two-dimensional infinite particle system related to non-Hermitian Gaussian random matrices. It has a logarithmic interaction potential with β = 2 \beta = 2 , but no algebraic configurations are known.The present result is the only construction.


2013 ◽  
Vol 88 (18) ◽  
Author(s):  
U. Ferrari ◽  
C. Lucibello ◽  
F. Morone ◽  
G. Parisi ◽  
F. Ricci-Tersenghi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document