master equations
Recently Published Documents


TOTAL DOCUMENTS

613
(FIVE YEARS 69)

H-INDEX

53
(FIVE YEARS 5)

2022 ◽  
Vol 258 ◽  
pp. 05009
Author(s):  
Stéphane Delorme ◽  
Thierry Gousset ◽  
Roland Katz ◽  
Pol-Bernard Gossiaux

We investigate the real-time dynamics of a correlated heavy quarkantiquark pair inside the Quark-Gluon Plasma using new quantum master equations derived from first QCD principles and based on the work of Blaizot & Escobedo [4]. The full equations are directly numerically solved in one-dimension to reduce computing costs and is used to gain insight on the dynamics in both a static and evolving medium following a Björken-like temperature evolution. The effect of the initial state on the dynamics is also studied.


2021 ◽  
Vol 104 (24) ◽  
Author(s):  
Jose Reina-Gálvez ◽  
Nicolás Lorente ◽  
Fernando Delgado ◽  
Liliana Arrachea

2021 ◽  
Vol 104 (6) ◽  
Author(s):  
Abhaya S. Hegde ◽  
K. P. Athulya ◽  
Vijay Pathak ◽  
Jyrki Piilo ◽  
Anil Shaji

Author(s):  
Patrick Potts ◽  
Alex Kalaee ◽  
Andreas Wacker

Abstract Markovian master equations provide a versatile tool for describing open quantum systems when memory effects of the environment may be neglected. As these equations are of an approximate nature, they often do not respect the laws of thermodynamics when no secular approximation is performed in their derivation. Here we introduce a Markovian master equation that is thermodynamically consistent and provides an accurate description whenever memory effects can be neglected. The thermodynamic consistency is obtained through a rescaled Hamiltonian for the thermodynamic bookkeeping, exploiting the fact that a Markovian description implies a limited resolution for heat. Our results enable a thermodynamically consistent description of a variety of systems where the secular approximation breaks down.


Author(s):  
Michael te Vrugt ◽  
Gyula I. Tóth ◽  
Raphael Wittkowski

AbstractWigner functions, allowing for a reformulation of quantum mechanics in phase space, are of central importance for the study of the quantum-classical transition. A full understanding of the quantum-classical transition, however, also requires an explanation for the absence of macroscopic superpositions to solve the quantum measurement problem. Stochastic reformulations of quantum mechanics based on spontaneous collapses of the wavefunction are a popular approach to this issue. In this article, we derive the dynamic equations for the four most important spontaneous collapse models—Ghirardi–Rimini–Weber (GRW) theory, continuous spontaneous localization (CSL) model, Diósi-Penrose model, and dissipative GRW model—in the Wigner framework. The resulting master equations are approximated by Fokker–Planck equations. Moreover, we use the phase-space form of GRW theory to test, via molecular dynamics simulations, David Albert’s suggestion that the stochasticity induced by spontaneous collapses is responsible for the emergence of thermodynamic irreversibility. The simulations show that, for initial conditions leading to anti-thermodynamic behavior in the classical case, GRW-type perturbations do not lead to thermodynamic behavior. Consequently, the GRW-based equilibration mechanism proposed by Albert is not observed.


Entropy ◽  
2021 ◽  
Vol 23 (11) ◽  
pp. 1382
Author(s):  
Katarzyna Siudzińska ◽  
Arpan Das ◽  
Anindita Bera

In this paper, we analyze the classical capacity of the generalized Pauli channels generated via memory kernel master equations. For suitable engineering of the kernel parameters, evolution with non-local noise effects can produce dynamical maps with a higher capacity than a purely Markovian evolution. We provide instructive examples for qubit and qutrit evolution. Interestingly, similar behavior is not observed when analyzing time-local master equations.


Sign in / Sign up

Export Citation Format

Share Document