Classical nonlinearity and quantum decay: The effect of classical phase-space structures

2001 ◽  
Vol 64 (5) ◽  
Author(s):  
Yosef Ashkenazy ◽  
Luca Bonci ◽  
Jacob Levitan ◽  
Roberto Roncaglia
1993 ◽  
Vol 223 (2) ◽  
pp. 43-133 ◽  
Author(s):  
O. Bohigas ◽  
S. Tomsovic ◽  
D. Ullmo

2021 ◽  
pp. 133047
Author(s):  
Yuta Mizuno ◽  
Mikoto Takigawa ◽  
Saki Miyashita ◽  
Yutaka Nagahata ◽  
Hiroshi Teramoto ◽  
...  

2018 ◽  
Vol 23 (6) ◽  
pp. 751-766 ◽  
Author(s):  
Víctor J. García-Garrido ◽  
Francisco Balibrea-Iniesta ◽  
Stephen Wiggins ◽  
Ana M. Mancho ◽  
Carlos Lopesino

2006 ◽  
Vol 21 (03) ◽  
pp. 505-516 ◽  
Author(s):  
A. C. R. MENDES ◽  
C. NEVES ◽  
W. OLIVEIRA ◽  
F. I. TAKAKURA

In this paper we define a noncommutative (NC) metafluid dynamics.1,2 We applied the Dirac's quantization to the metafluid dynamics on NC spaces. First class constraints were found which are the same obtained in Ref. 4. The gauge covariant quantization of the nonlinear equations of fields on noncommutative spaces were studied. We have found the extended Hamiltonian which leads to equations of motion in the gauge covariant form. In addition, we show that a particular transformation3 on the usual classical phase space (CPS) leads to the same results as of the ⋆-deformation with ν = 0. Besides, we have shown that an additional term is introduced into the dissipative force due to the NC geometry. This is an interesting feature due to the NC nature induced into model.


Sign in / Sign up

Export Citation Format

Share Document