scholarly journals Nonlinear Landau damping and modulation of electrostatic waves in a nonextensive electron-positron-pair plasma

2015 ◽  
Vol 92 (6) ◽  
Author(s):  
Debjani Chatterjee ◽  
A. P. Misra
2008 ◽  
Vol 74 (1) ◽  
pp. 91-97 ◽  
Author(s):  
J. T. MENDONÇA ◽  
J. E. RIBEIRO ◽  
P. K. SHUKLA

AbstractThe dispersion relation for a quantum pair plasma is derived, by using a wave kinetic description. A general form of the kinetic dispersion relation for electrostatic waves in a two-component quantum plasma is established. The particular case of an electron–positron pair plasma is considered in detail. Exact expressions for Landau damping are derived, and the quasi-classical limit is discussed.


2010 ◽  
Vol 76 (6) ◽  
pp. 875-886 ◽  
Author(s):  
ROZINA CHAUDHARY ◽  
NODAR L. TSINTSADZE ◽  
P. K. SHUKLA

AbstractThe creation and annihilation of relativistically hot electron–positron (EP) pair plasmas in the presence of intense electromagnetic (EM) waves, which are not in thermal equilibrium, are studied by formulating a new plasma particle distribution functions, which are valid for both relativistic temperatures and relativistic amplitudes of the EM waves. It is found that intense EM waves in a collisionless EP plasma damp via nonlinear Landau damping. Accounting for the latter, we have obtained relativistic kinetic nonlinear Schrödinger equation (NLSE) with local and non-local nonlinearities. The NLSE depicts nonlinear Landau damping rates for intense EM waves. The damping rates are examined for dense and tenuous pair plasmas. Furthermore, we have studied the modulational instabilities of intense EM waves in the presence of nonlinear Landau damping. Our results reveal a new class of the modulational instability that is triggered by the inverse Landau damping in a relativistically hot EP plasma. Finally, we discuss localization of intense EM waves due to relativistic electron and positron mass increase in a hot pair plasma.


2016 ◽  
Vol 688 ◽  
pp. 012010 ◽  
Author(s):  
Hui Chen ◽  
J. Bonlie ◽  
R. Cauble ◽  
F. Fiuza ◽  
W. Goldstein ◽  
...  

1987 ◽  
Vol 125 ◽  
pp. 450-450
Author(s):  
S. Shibata

Pulsar may be regarded as a discharge tube by electron-positron pair creation. On this viewpoint we carry out two numerical calculations. The obtained magnetic field is consistent with the flow. We find that pulsars emit their rotational energy through three modes simultaneously. The three modes are (1)relativistic acceleration and following gamma-ray emission in the closed current circuit in the magnetosphere, (2)wind of the electron-positron pair plasma, and (3)dipole radiation.


1998 ◽  
Vol 188 ◽  
pp. 402-403
Author(s):  
Y. Tajima ◽  
J. Fukue

The accretion disks are now supposed to be the main driving source of the active astrophysical phenomena. Even the electron-positron pair plasma will be created at the surface of the sufficiently luminous disk. While the effect of radiation drag which causes in the intense radiation fields around the accretion disk is examined recently. Then, we numerically consider the radiative accelerated pair-winds, which blow off from central luminous accretion disk surrounding a black hole, taking into account radiation drag of the order of v/c.


1995 ◽  
Vol 64 (6) ◽  
pp. 2018-2035 ◽  
Author(s):  
Reiji Sugaya ◽  
Hideyuki Tachibana ◽  
Hirobumi Yamashita ◽  
Kouji Miyake ◽  
Akihiro Ue ◽  
...  

2011 ◽  
Vol 106 (10) ◽  
Author(s):  
E. N. Nerush ◽  
I. Yu. Kostyukov ◽  
A. M. Fedotov ◽  
N. B. Narozhny ◽  
N. V. Elkina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document