scholarly journals Neutron-Star Radius from a Population of Binary Neutron Star Mergers

2018 ◽  
Vol 120 (3) ◽  
Author(s):  
Sukanta Bose ◽  
Kabir Chakravarti ◽  
Luciano Rezzolla ◽  
B. S. Sathyaprakash ◽  
Kentaro Takami
2021 ◽  
Vol 103 (12) ◽  
Author(s):  
Rossella Gamba ◽  
Matteo Breschi ◽  
Sebastiano Bernuzzi ◽  
Michalis Agathos ◽  
Alessandro Nagar

2021 ◽  
Vol 502 (2) ◽  
pp. 1843-1855
Author(s):  
Antonios Nathanail ◽  
Ramandeep Gill ◽  
Oliver Porth ◽  
Christian M Fromm ◽  
Luciano Rezzolla

ABSTRACT We perform 3D general-relativistic magnetohydrodynamic simulations to model the jet break-out from the ejecta expected to be produced in a binary neutron-star merger. The structure of the relativistic outflow from the 3D simulation confirms our previous results from 2D simulations, namely, that a relativistic magnetized outflow breaking out from the merger ejecta exhibits a hollow core of θcore ≈ 4°, an opening angle of θjet ≳ 10°, and is accompanied by a wind of ejected matter that will contribute to the kilonova emission. We also compute the non-thermal afterglow emission of the relativistic outflow and fit it to the panchromatic afterglow from GRB170817A, together with the superluminal motion reported from VLBI observations. In this way, we deduce an observer angle of $\theta _{\rm obs}= 35.7^{\circ \, \, +1.8}_{\phantom{\circ \, \, }-2.2}$. We further compute the afterglow emission from the ejected matter and constrain the parameter space for a scenario in which the matter responsible for the thermal kilonova emission will also lead to a non-thermal emission yet to be observed.


2020 ◽  
Vol 804 ◽  
pp. 135402 ◽  
Author(s):  
Revaz Beradze ◽  
Merab Gogberashvili ◽  
Alexander S. Sakharov

2013 ◽  
Vol 88 (4) ◽  
Author(s):  
Kenta Hotokezaka ◽  
Kenta Kiuchi ◽  
Koutarou Kyutoku ◽  
Takayuki Muranushi ◽  
Yu-ichiro Sekiguchi ◽  
...  

2017 ◽  
Vol 96 (6) ◽  
Author(s):  
Francesco Maione ◽  
Roberto De Pietri ◽  
Alessandra Feo ◽  
Frank Löffler

2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Francisco Hernandez Vivanco ◽  
Rory Smith ◽  
Eric Thrane ◽  
Paul D. Lasky

2021 ◽  
Author(s):  
◽  
Lukas Weih

High-energy astrophysics plays an increasingly important role in the understanding of our universe. On one hand, this is due to ground-breaking observations, like the gravitational-wave detections of the LIGO and Virgo network or the black-hole shadow observations of the EHT collaboration. On the other hand, the field of numerical relativity has reached a level of sophistication that allows for realistic simulations that include all four fundamental forces of nature. A prime example of how observations and theory complement each other can be seen in the studies following GW170817, the first detection of gravitational waves from a binary neutron-star merger. The same detection is also the chronological starting point of this Thesis. The plethora of information and constraints on nuclear physics derived from GW170817 in conjunction with theoretical computations will be presented in the first part of this Thesis. The second part goes beyond this detection and prepares for future observations when also the high-frequency postmerger signal will become detectable. Specifically, signatures of a quark-hadron phase transition are discussed and the specific case of a delayed phase transition is analyzed in detail. Finally, the third part of this Thesis focuses on the inclusion of radiative transport in numerical astrophysics. In the context of binary neutron-star mergers, radiation in the form of neutrinos is crucial for realistic long-term simulations. Two methods are introduced for treating radiation: the approximate state-of-the-art two-moment method (M1) and the recently developed radiative Lattice-Boltzmann method. The latter promises to be more accurate than M1 at a comparable computational cost. Given that most methods for radiative transport or either inaccurate or unfeasible, the derivation of this new method represents a novel and possibly paradigm-changing contribution to an accurate inclusion of radiation in numerical astrophysics.


Sign in / Sign up

Export Citation Format

Share Document