magnetohydrodynamic simulations
Recently Published Documents


TOTAL DOCUMENTS

377
(FIVE YEARS 103)

H-INDEX

60
(FIVE YEARS 9)

2022 ◽  
Vol 924 (2) ◽  
pp. 46
Author(s):  
Lia Medeiros ◽  
Chi-Kwan Chan ◽  
Ramesh Narayan ◽  
Feryal Özel ◽  
Dimitrios Psaltis

Abstract The Event Horizon Telescope recently captured images of the supermassive black hole in the center of the M87 galaxy, which shows a ring-like emission structure with the south side only slightly brighter than the north side. This relatively weak asymmetry in the brightness profile along the ring has been interpreted as a consequence of the low inclination of the observer (around 17° for M87), which suppresses the Doppler beaming and boosting effects that might otherwise be expected due to the nearly relativistic velocities of the orbiting plasma. In this work, we use a large suite of general relativistic magnetohydrodynamic simulations to reassess the validity of this argument. By constructing explicit counterexamples, we show that low inclination is a sufficient but not necessary condition for images to have low brightness asymmetry. Accretion flow models with high accumulated magnetic flux close to the black hole horizon (the so-called magnetically arrested disks) and low black hole spins have angular velocities that are substantially smaller than the orbital velocities of test particles at the same location. As a result, such models can produce images with low brightness asymmetry even when viewed edge on.


2022 ◽  
Vol 3 (1) ◽  
pp. 5
Author(s):  
T. A. Nordheim ◽  
L. H. Regoli ◽  
C. D. K. Harris ◽  
C. Paranicas ◽  
K. P. Hand ◽  
...  

Abstract Jupiter’s moon Europa is exposed to constant bombardment by magnetospheric charged particles, which are expected to be a major source of physical and chemical surface modification. Here we have investigated the flux of magnetospheric ions at Europa’s surface by carrying out single particle tracing within realistic electromagnetic fields from multifluid magnetohydrodynamic simulations of the moon’s interaction with Jupiter’s magnetosphere. We find that magnetic field line draping and pileup leads to shielding and drastically reduced flux at low latitudes across Europa’s trailing (upstream) hemisphere. Furthermore, we find that magnetic induction within Europa’s subsurface ocean leads to additional shielding when the moon is located at high magnetic latitudes in Jupiter’s magnetosphere. Overall, we find that the high-latitude and polar regions on Europa receive the largest flux of magnetospheric ions. Both spacecraft and ground-based observations have previously identified a non–water ice surface species concentrated at Europa’s trailing (upstream) hemisphere, possibly hydrated sulfuric acid formed from radiolysis of water ice with implanted S ions. Our results demonstrate that the S ion flux across Europa’s equatorial trailing (upstream) hemisphere is strongly reduced, possibly indicating that the formation of the observed non–water ice species is controlled primarily by energy input from magnetospheric electrons, rather than the flux of S ions. We find that that O and S ions at >1 MeV energies have nearly uniform access to the surface, while energetic protons in this energy range are constrained to a “bull’s-eye” centered on the trailing (upstream) hemisphere.


2021 ◽  
Vol 163 (1) ◽  
pp. 11
Author(s):  
Michael L. Palumbo III ◽  
Eric B. Ford ◽  
Jason T. Wright ◽  
Suvrath Mahadevan ◽  
Alexander W. Wise ◽  
...  

Abstract Owing to recent advances in radial-velocity instrumentation and observation techniques, the detection of Earth-mass planets around Sun-like stars may soon be primarily limited by intrinsic stellar variability. Several processes contribute to this variability, including starspots, pulsations, and granulation. Although many previous studies have focused on techniques to mitigate signals from pulsations and other types of magnetic activity, granulation noise has to date only been partially addressed by empirically motivated observation strategies and magnetohydrodynamic simulations. To address this deficit, we present the GRanulation And Spectrum Simulator (GRASS), a new tool designed to create time-series synthetic spectra with granulation-driven variability from spatially and temporally resolved observations of solar absorption lines. In this work, we present GRASS, detail its methodology, and validate its model against disk-integrated solar observations. As a first-of-its-kind empirical model for spectral variability due to granulation in a star with perfectly known center-of-mass radial-velocity behavior, GRASS is an important tool for testing new methods of disentangling granular line-shape changes from true Doppler shifts.


2021 ◽  
Vol 923 (1) ◽  
pp. 57
Author(s):  
Oliver E. K. Rice ◽  
Anthony R. Yeates

Abstract Given a known radial magnetic field distribution on the Sun’s photospheric surface, there exist well-established methods for computing a potential magnetic field in the corona above. Such potential fields are routinely used as input to solar wind models, and to initialize magneto-frictional or full magnetohydrodynamic simulations of the coronal and heliospheric magnetic fields. We describe an improved magnetic field model that calculates a magneto-frictional equilibrium with an imposed solar wind profile (which can be Parker’s solar wind solution, or any reasonable equivalent). These “outflow fields” appear to approximate the real coronal magnetic field more closely than a potential field, take a similar time to compute, and avoid the need to impose an artificial source surface. Thus they provide a practical alternative to the potential field model for initializing time-evolving simulations or modeling the heliospheric magnetic field. We give an open-source Python implementation in spherical coordinates and apply the model to data from solar cycle 24. The outflow tends to increase the open magnetic flux compared to the potential field model, reducing the well-known discrepancy with in situ observations.


2021 ◽  
Vol 922 (2) ◽  
pp. 181
Author(s):  
M. Opher ◽  
J. F. Drake ◽  
G. Zank ◽  
E. Powell ◽  
W. Shelley ◽  
...  

Abstract The heliosphere is the bubble formed by the solar wind as it interacts with the interstellar medium (ISM). The collimation of the heliosheath (HS) flows by the solar magnetic field in the heliotail into distinct north and south columns (jets) is seen in recent global simulations of the heliosphere. However, there is disagreement between the models about how far downtail the two-lobe feature persists and whether the ambient ISM penetrates into the region between the two lobes. Magnetohydrodynamic simulations show that these heliospheric jets become unstable as they move down the heliotail and drive large-scale turbulence. However, the mechanism that produces this turbulence had not been identified. Here we show that the driver of the turbulence is the Rayleigh–Taylor (RT) instability produced by the interaction of neutral H atoms streaming from the ISM with the ionized matter in the HS. The drag between the neutral and ionized matter acts as an effective gravity, which causes an RT instability to develop along the axis of the HS magnetic field. A density gradient exists perpendicular to this axis due to the confinement of the solar wind by the solar magnetic field. The characteristic timescale of the instability depends on the neutral H density in the ISM and for typical values the growth rate is ∼3 years. The instability destroys the coherence of the heliospheric jets and magnetic reconnection ensues, allowing ISM material to penetrate the heliospheric tail. Signatures of this instability should be observable in Energetic Neutral Atom maps from future missions such as the Interstellar Mapping and Acceleration Probe (IMAP). The turbulence driven by the instability is macroscopic and potentially has important implications for particle acceleration.


2021 ◽  
Vol 922 (2) ◽  
pp. 201
Author(s):  
Haifeng Yang ◽  
Xue-Ning Bai

Abstract It has recently been established that the evolution of protoplanetary disks is primarily driven by magnetized disk winds, requiring a large-scale magnetic flux threading the disks. The size of such disks is expected to shrink with time, as opposed to the conventional scenario of viscous expansion. We present the first global 2D non-ideal magnetohydrodynamic simulations of protoplanetary disks that are truncated in the outer radius, aiming to understand the interaction of the disk with the interstellar environment, as well as the global evolution of the disk and magnetic flux. We find that as the system relaxes, the poloidal magnetic field threading the disk beyond the truncation radius collapses toward the midplane, leading to a rapid reconnection. This process removes a substantial amount of magnetic flux from the system and forms closed poloidal magnetic flux loops encircling the outer disk in quasi-steady state. These magnetic flux loops can drive expansion beyond the truncation radius, corresponding to substantial mass loss through a magnetized disk outflow beyond the truncation radius analogous to a combination of viscous spreading and external photoevaporation. The magnetic flux loops gradually shrink over time, the rates of which depend on the level of disk magnetization and the external environment, which eventually governs the long-term disk evolution.


Author(s):  
Lizhong Zhang ◽  
Omer Blaes ◽  
Yan-Fei Jiang

Abstract A major uncertainty in the structure and dynamics of magnetized, radiation pressure dominated neutron star accretion columns in X-ray pulsars and pulsating ultraluminous X-ray sources is that they are thought to be subject to the photon bubble instability. We present the results of two dimensional radiation relativistic magnetohydrodynamic simulations of a non-accreting, static atmosphere to study the development of this instability assuming isotropic Thomson scattering in the slow diffusion regime that is relevant to neutron star accretion columns. Photon bubbles generally grow faster toward shorter wavelengths, until a maximum growth rate is achieved at the radiation viscosity length scale, which is generally quite small and requires high numerical resolution to simulate. We confirm the consistency between our simulation results and linear theory in detail, and show that the nonlinear evolution inevitably leads to collapse of the atmosphere with the higher resolution simulation collapsing faster due to the presence of shorter length scale nonlinear structures. At least in static atmospheres with horizontally periodic boundary conditions, this resolution dependence may make simulations of the nonlinear dynamics of photon bubble instability in neutron star accretion columns challenging. It remains to be seen whether these difficulties will persist upon inclusion of an accretion flow through the top and magnetically-confined horizontal boundaries through which photons can escape. Our results here provide a foundation for such future work.


Galaxies ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 62
Author(s):  
Aritra Basu ◽  
Sharanya Sur

Polarized synchrotron emission from the radio halos of diffuse intracluster medium (ICM) in galaxy clusters are yet to be observed. To investigate the expected polarization in the ICM, we use high resolution (1 kpc) magnetohydrodynamic simulations of fluctuation dynamos, which produces intermittent magnetic field structures, for varying scales of turbulent driving (lf) to generate synthetic observations of the polarized emission. We focus on how the inferred diffuse polarized emission for different lf is affected due to smoothing by a finite telescope resolution. The mean fractional polarization ⟨p⟩ vary as ⟨p⟩∝lf1/2 with ⟨p⟩>20% for lf≳60 kpc, at frequencies ν>4GHz. Faraday depolarization at ν<3 GHz leads to deviation from this relation, and in combination with beam depolarization, filamentary polarized structures are completely erased, reducing ⟨p⟩ to below 5% level at ν≲1 GHz. Smoothing on scales up to 30 kpc reduces ⟨p⟩ above 4 GHz by at most a factor of 2 compared to that expected at 1 kpc resolution of the simulations, especially for lf≳100 kpc, while at ν<3 GHz, ⟨p⟩ is reduced by a factor of more than 5 for lf≳100 kpc, and by more than 10 for lf≲100 kpc. Our results suggest that observational estimates of, or constrain on, ⟨p⟩ at ν≳4 GHz could be used as an indicator of the turbulent driving scale in the ICM.


Author(s):  
R. T. Desai ◽  
M. P. Freeman ◽  
J. P. Eastwood ◽  
J. W. B. Eggington ◽  
M. O. Archer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document