scholarly journals Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20  μHz

2018 ◽  
Vol 120 (6) ◽  
Author(s):  
M. Armano ◽  
H. Audley ◽  
J. Baird ◽  
P. Binetruy ◽  
M. Born ◽  
...  
Keyword(s):  
2018 ◽  
Vol 35 (3) ◽  
pp. 035017 ◽  
Author(s):  
G Russano ◽  
A Cavalleri ◽  
A Cesarini ◽  
R Dolesi ◽  
V Ferroni ◽  
...  

2017 ◽  
Vol 26 (05) ◽  
pp. 1741023 ◽  
Author(s):  
D. Vetrugno ◽  

LISA Pathfinder (LPF) is an in-flight technological demonstrator designed and launched to prove the feasibility of sub-femto-[Formula: see text] free fall of kilo-sized test masses (TM), an essential ingredient for the future gravitational wave observatory from space. Half a year after launch, the first results are available and show an incredibly well-performing instrument. The results represent a first and important step towards the long awaited construction and launch of LISA, the Laser Interferometer Space Antenna.


2013 ◽  
Vol 22 (01) ◽  
pp. 1341001 ◽  
Author(s):  
PAUL W. McNAMARA

Laser Interferometer Space Antenna (LISA) Pathfinder (formerly known as SMART-2) is a European Space Agency mission designed to pave the way for the joint ESA/NASA LISA mission by testing in flight the critical technologies required for space borne gravitational wave detection; it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra precise micro-Newton propulsion system. LISA Pathfinder (LPF) essentially mimics one arm of space-borne gravitational wave detectors by shrinking the million kilometer scale armlengths down to a few tens of centimeters, giving up the sensitivity to gravitational waves, but keeping the measurement technology. The scientific objective of the LPF mission consists then of the first in-flight test of low frequency gravitational wave detection metrology.


2019 ◽  
Vol 486 (3) ◽  
pp. 3368-3379
Author(s):  
M Armano ◽  
H Audley ◽  
J Baird ◽  
P Binetruy ◽  
M Born ◽  
...  

Abstract LISA Pathfinder (LPF) was a technology pioneering mission designed to test key technologies required for gravitational wave detection in space. In the low frequency regime (milliHertz and below), where space-based gravitational wave observatories will operate, temperature fluctuations play a crucial role since they can couple into the interferometric measurement and the test masses’ free-fall accuracy in many ways. A dedicated temperature measurement subsystem, with noise levels in 10 $\mu$K Hz−1/2 down to 1 mHz was part of the diagnostics unit onboard LPF. In this paper we report on the temperature measurements throughout mission operations, characterize the thermal environment, estimate transfer functions between different locations, and report temperature stability (and its time evolution) at frequencies as low as 10 $\mu$Hz, where typically values around 1 K Hz−1/2 were measured.


2019 ◽  
Vol 123 (11) ◽  
Author(s):  
M. Armano ◽  
H. Audley ◽  
J. Baird ◽  
P. Binetruy ◽  
M. Born ◽  
...  

2020 ◽  
pp. 3-8
Author(s):  
L.F. Vitushkin ◽  
F.F. Karpeshin ◽  
E.P. Krivtsov ◽  
P.P. Krolitsky ◽  
V.V. Nalivaev ◽  
...  

The State special primary acceleration measurement standard for gravimetry (GET 190-2019), its composition, principle of operation and basic metrological characteristics are presented. This standard is on the upper level of reference for free-fall acceleration measurements. Its accuracy and reliability were improved as a result of optimisation of the adjustment procedures for measurement systems and its integration within the upgraded systems, units and modern hardware components. A special attention was given to adjusting the corrections applied to measurement results with respect to procedural, physical and technical limitations. The used investigation methods made it possibled to confirm the measurement range of GET 190-2019 and to determine the contributions of main sources of errors and the total value of these errors. The measurement characteristics and GET 90-2019 were confirmed by the results obtained from measurements of the absolute value of the free fall acceleration at the gravimetrical site “Lomonosov-1” and by their collation with the data of different dates obtained from measurements by high-precision foreign and domestic gravimeters. Topicality of such measurements ensues from the requirements to handle the applied problems that need data on parameters of the Earth gravitational field, to be adequately faced. Geophysics and navigation are the main fields of application for high-precision measurements in this field.


2007 ◽  
pp. 55-70 ◽  
Author(s):  
E. Schliesser

The article examines in detail the argument of M. Friedman as expressed in his famous article "Methodology of Positive Economics". In considering the problem of interconnection of theoretical hypotheses with experimental evidence the author illustrates his thesis using the history of the Galilean law of free fall and its role in the development of theoretical physics. He also draws upon methodological ideas of the founder of experimental economics and Nobel prize winner V. Smith.


Sign in / Sign up

Export Citation Format

Share Document