Erratum: Detecting Charge Noise with a Josephson Junction: A Problem of Thermal Escape in Presence of Non-Gaussian Fluctuations [Phys. Rev. Lett.98, 036601 (2007)]

2007 ◽  
Vol 99 (13) ◽  
Author(s):  
Joachim Ankerhold
2018 ◽  
Vol 27 (14) ◽  
pp. 1846005 ◽  
Author(s):  
Tom Banks ◽  
W. Fischler

This essay outlines the Holographic Spacetime (HST) theory of cosmology and its relation to conventional theories of inflation. The predictions of the theory are compatible with observations, and one must hope for data on primordial gravitational waves or non-Gaussian fluctuations to distinguish it from conventional models. The model predicts an early era of structure formation, prior to the Big Bang. Understanding the fate of those structures requires complicated simulations that have not yet been done. The result of those calculations might falsify the model, or might provide a very economical framework for explaining dark matter and the generation of the baryon asymmetry.


1991 ◽  
Vol 43 (2) ◽  
pp. 362-368 ◽  
Author(s):  
Insu Yi ◽  
Ethan T. Vishniac ◽  
Shin Mineshige

2019 ◽  
Vol 9 (9) ◽  
pp. 1841
Author(s):  
Fengqin Zhu ◽  
Oleg E. Gulin ◽  
Igor O. Yaroshchuk

Based on the local mode method, the problem of the average intensity (transmission loss) behavior in shallow waveguides with losses in the bottom and fluctuations of the speed of sound in water is considered. It was previously shown that the presence in a waveguide with absorbing penetrable bottom of 2D random inhomogeneities of the speed of sound leads to the appearance of strong fluctuations in the acoustic field already at relatively small distances from the sound source. One of the most important and interesting manifestations of this is the slowing down of the average intensity of the acoustic field compared with a waveguide, which has no such random inhomogeneities of the speed of sound. This paper presents the results of a numerical analysis of the decay of the average field intensity in the presence of both Gaussian and non-Gaussian fluctuations in the speed of sound. It is shown that non-Gaussian fluctuations do not fundamentally change the conclusion about reducing losses during the propagation of a sound signal but can enhance this effect.


Sign in / Sign up

Export Citation Format

Share Document