primordial black hole
Recently Published Documents


TOTAL DOCUMENTS

318
(FIVE YEARS 143)

H-INDEX

42
(FIVE YEARS 14)

2022 ◽  
Vol 105 (2) ◽  
Author(s):  
Jing Liu ◽  
Ligong Bian ◽  
Rong-Gen Cai ◽  
Zong-Kuan Guo ◽  
Shao-Jiang Wang

2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Guillermo Ballesteros ◽  
Sebastián Céspedes ◽  
Luca Santoni

Abstract We study the generation of a large power spectrum, necessary for primordial black hole formation, within the effective theory of single-field inflation. The mechanisms we consider include a transition into a ghost-inflation-like phase and scenarios where an exponentially growing mode is temporarily turned on. In the cases we discuss, the enhancement in the power spectrum results from either a swift change in some effective coupling or a modification of the dispersion relation for the perturbations, while the background evolution remains unchanged and approximately de Sitter throughout inflation. The robustness of the results is guaranteed thanks to a weakly broken galileon symmetry, which protects the effective couplings against large quantum corrections. We discuss how the enhancement of the power spectrum is related to the energy scale of the operators with weakly broken galileon invariance, and study the limits imposed by strong coupling and the validity of the perturbative expansion.


2022 ◽  
Vol 2022 (1) ◽  
Author(s):  
Yi-Peng Wu ◽  
Elena Pinetti ◽  
Kalliopi Petraki ◽  
Joseph Silk

Abstract The ultra-slow-roll (USR) inflation represents a class of single-field models with sharp deceleration of the rolling dynamics on small scales, leading to a significantly enhanced power spectrum of the curvature perturbations and primordial black hole (PBH) formation. Such a sharp transition of the inflationary background can trigger the coherent motion of scalar condensates with effective potentials governed by the rolling rate of the inflaton field. We show that a scalar condensate carrying (a combination of) baryon or lepton number can achieve successful baryogenesis through the Affleck-Dine mechanism from unconventional initial conditions excited by the USR transition. Viable parameter space for creating the correct baryon asymmetry of the Universe naturally incorporates the specific limit for PBHs to contribute significantly to dark matter, shedding light on the cosmic coincidence problem between the baryon and dark matter densities today.


2022 ◽  
Vol 82 (1) ◽  
Author(s):  
Sai Wang ◽  
Zhi-Chao Zhao

AbstractTwo gravitational wave events, i.e. GW200105 and GW200115, were observed by the Advanced LIGO and Virgo detectors recently. In this work, we show that they can be explained by a scenario of primordial black hole binaries that are formed in the early Universe. The merger rate predicted by such a scenario could be consistent with the one estimated from LIGO and Virgo, even if primordial black holes constitute a fraction of cold dark matter. The required abundance of primordial black holes is compatible with the existing upper limits from microlensing, caustic crossing and cosmic microwave background observations.


2021 ◽  
Vol 104 (12) ◽  
Author(s):  
Nicolás Bernal ◽  
Yuber F. Perez-Gonzalez ◽  
Yong Xu ◽  
Óscar Zapata

2021 ◽  
Author(s):  
Rui feng Zheng ◽  
Jia ming Shi ◽  
Taotao Qiu

Abstract It is well known that primordial black hole (PBH) can be generated in inflation process of the early universe, especially when the inflaton field has some non-trivial features that could break the slow-roll condition. In this paper, we investigate a toy model of inflation with bumpy potential, which has one or several bumps. We found that potential with multi-bump can give rise to power spectra with multi peaks in small-scale region, which can in turn predict the generation of primordial black holes in various mass ranges. We also consider the two possibilities of PBH formation by spherical collapse and elliptical collapse. And discusses the scalar-induced gravitational waves (SIGWs) generated by the second-order scalar perturbations.


2021 ◽  
Vol 2021 (12) ◽  
pp. 051
Author(s):  
Antonio Capanema ◽  
AmirFarzan Esmaeili ◽  
Arman Esmaili

Abstract A primordial black hole in the last stages of evaporation and located in the local neighborhood can produce a detectable signal in gamma ray and neutrino telescopes. We re-evaluate the expected gamma ray and neutrino fluxes from these transient point events and discuss the consequences for existing constraints. For gamma rays we improve the current bounds by a factor of few, while for neutrinos we obtain significantly different results than the existing literature. The capability and advantages of neutrino telescopes in the search for primordial black holes is discussed thoroughly. The correlations of gamma ray and neutrino energy and time profiles will be promoted as a powerful tool in identifying the primordial black holes, in case of detection.


Sign in / Sign up

Export Citation Format

Share Document