Poly[aqua[μ3-(pyridin-1-ium-3,5-diyl)diphosphonato-κ3O:O′:O′′][μ2-(pyridin-1-ium-3,5-diyl)diphosphonato-κ2O:O′]calcium(II)]

Author(s):  
Magdalena Wilk ◽  
Jan Janczak ◽  
Veneta Videnova-Adrabinska

The rigid organic ligand (pyridine-3,5-diyl)diphosphonic acid has been used to create the title novel three-dimensional coordination polymer, [Ca(C5H6NO6P2)2(H2O)]n. The six-coordinate calcium ion is in a distorted octahedral environment, formed by five phosphonate O atoms from five different (pyridin-1-ium-3,5-diyl)diphosphonate ligands, two of which are unique, and one water O atom. Two crystallographically independent acid monoanions,L1 andL2, serve to link metal centres using two different coordination modes,viz.η2μ2and η3μ3, respectively. The latter ligand,L2, forms a strongly undulated two-dimensional framework parallel to the crystallographicbcplane, whereas the former ligand,L1, is utilized in the formation of one-dimensional helical chains in the [010] direction. The two sublattices ofL1 andL2 interweave at the Ca2+ions to form a three-dimensional framework. In addition, multiple O—H...O and N—H...O hydrogen bonds stabilize the three-dimensional coordination network. Topologically, the three-dimensional framework can be simplified as a very unusual (2,3,5)-connected three-nodal net represented by the Schläfli symbol (4·82)(4·88·10)(8).

2013 ◽  
Vol 69 (10) ◽  
pp. 1128-1131 ◽  
Author(s):  
Ming-Liang Liu

The title salt,catena-poly[trimethylsulfonium [μ2-chlorido-di-μ2-thiocyanato-cadmate(II)]] {(C3H9S)[CdCl(NCS)2]}n, consists of trimethylsulfonium cations sandwiched between layers of a two-dimensional polyanion. The CdIIcentre displays a distorted octahedral environment coordinated by two bridging Cl atoms, two thiocyanate N atoms and two thiocyanate S atoms. The thiocyanate groups adopt the μ-1,3-coordination mode and bridge the CdIIcentres into a one-dimensional zigzag chain extended along the [110] direction. The CdIIcentres of the zigzag chains are crosslinked by bridging Cl atoms, forming a two-dimensional polyanion. The two-dimensional anions are linked to layers of trimethylsulfonium cations by weak intermolecular C—H...Cl hydrogen bonds, forming the three-dimensional structure.


2012 ◽  
Vol 68 (8) ◽  
pp. m1131-m1131
Author(s):  
Jun Wang ◽  
Wubiao Zhu ◽  
Jichang Li

In the title one-dimensional coordination polymer, [Mn(NCS)3(C10H16N3)]n, the MnIIatom is coordinated by anN,N′-bidentate Schiff base and four thiocyanate ligands in a distorted octahedral N5S geometry. Bridging thiocyanate ligands interconnect adjacent [Mn(NCS)2(C10H16N3)] units, giving rise to helical chains extending along thebaxis. The chains are further linked through N—H...S hydrogen bonds, leading to a three-dimensional supramolecular network.


2014 ◽  
Vol 70 (8) ◽  
pp. 770-772 ◽  
Author(s):  
Xiao-Min Hao ◽  
Gang Chen ◽  
Chang-Sheng Gu ◽  
Ji-Wei Liu

In the title coordination polymer, [Cd2(SO4)2(C13H8N4)(H2O)2]n, there are two crystallographically independent CdIIcentres with different coordination geometries. The first CdIIcentre is hexacoordinated by four O atoms of four sulfate ligands, one water O atom and one N atom of a 1H-imidazo[4,5-f][1,10]phenanthroline (IP) ligand, giving a distorted octahedral coordination environment. The second CdIIcentre is heptacoordinated by four O atoms of three sulfate ligands, one water O atom and two N atoms of one chelating IP ligand, resulting in a distorted monocappedanti-trigonal prismatic geometry. The symmetry-independent CdIIions are bridged in an alternating fashion by sulfate ligands, forming one-dimensional ladder-like chains which are connected through the IP ligands to form two-dimensional layers. These two-dimensional layers are linked by interlayer hydrogen bonds, leading to the formation of a three-dimensional supramolecular network.


2018 ◽  
Vol 74 (10) ◽  
pp. 1128-1132 ◽  
Author(s):  
Yan-Ju Liu ◽  
Di Cheng ◽  
Ya-Xue Li ◽  
Jun-Di Zhang ◽  
Huai-Xia Yang

Imidazole-4,5-dicarboxylic acid (H3IDC) and its derivatives are widely used in the preparation of new coordination polymers owing to their versatile bridging coordination modes and potential hydrogen-bonding donors and acceptors. A new one-dimensional coordination polymer, namely catena-poly[[diaquacadmium(II)]-μ3-2,2′-(1,2-phenylene)bis(1H-imidazole-4,5-dicarboxylato)], [Cd(C16H6N4O8)0.5(H2O)2] n or [Cd(H2Phbidc)1/2(H2O)2] n , has been synthesized by the reaction of Cd(OAc)2·2H2O (OAc is acetate) with 2,2′-(1,2-phenylene)bis(1H-imidazole-4,5-dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, one type of Cd ion (Cd1) is six-coordinated by two N atoms and two O atoms from one H2Phbidc4− ligand and by two O atoms from two water molecules, forming a significantly distorted octahedral CdN2O4 coordination geometry. In contrast, the other type of Cd ion (Cd2) is six-coordinated by two N atoms and two O atoms from two symmetry-related H2Phbidc4− ligands and by two O atoms from two symmetry-related water molecules, leading to a more regular octahedral coordination geometry. The Cd1 and Cd2 ions are linked by H2Phbidc4− ligands into a one-dimensional chain which runs parallel to the b axis. In the crystal, the one-dimensional chains are connected through hydrogen bonds, generating a two-dimensional layered structure parallel to the ab plane. Adjacent layers are further linked by hydrogen bonds, forming a three-dimensional structure in the solid state.


2014 ◽  
Vol 70 (8) ◽  
pp. m298-m299
Author(s):  
Elumalai Govindhan ◽  
A. S. Ganeshraja ◽  
B. Bhavana ◽  
Krishnamoorthy Anbalagan ◽  
Arunachalam SubbiahPandi

The title compound, {[Zn(C3H3N2)(C3H4N2)2]NO3}n, is a one-dimensional coordination polymer along [01-1] with the ZnIIatom coordinating to four imidazole/imidazolide rings. The ZnIIatom has a regular tetrahedral geometry with the planes of the two monodentate imidazole rings inclined to one another by 87.94 (17)°, while the planes of the bridging imidazolide rings are inclined to one another by 39.06 (17)°. In the crystal, the chains are linkedviabifurcated N—H...(O,O) hydrogen bonds, forming sheets parallel to (001). These two-dimensional networks are linkedviaC—H...O hydrogen bonds and a C—H...π interaction, forming a three-dimensional structure.


2014 ◽  
Vol 70 (11) ◽  
pp. 1057-1063 ◽  
Author(s):  
Helen Stoeckli-Evans ◽  
Olha Sereda ◽  
Antonia Neels ◽  
Sebastien Oguey ◽  
Catherine Ionescu ◽  
...  

The one-dimensional coordination polymercatena-poly[diaqua(sulfato-κO)copper(II)]-μ2-glycine-κ2O:O′], [Cu(SO4)(C2H5NO2)(H2O)2]n, (I), was synthesized by slow evaporation under vacuum of a saturated aqueous equimolar mixture of copper(II) sulfate and glycine. On heating the same blue crystal of this complex to 435 K in an oven, its aspect changed to a very pale blue and crystal structure analysis indicated that it had transformed into the two-dimensional coordination polymer poly[(μ2-glycine-κ2O:O′)(μ4-sulfato-κ4O:O′:O′′:O′′)copper(II)], [Cu(SO4)(C2H5NO2)]n, (II). In (I), the CuIIcation has a pentacoordinate square-pyramidal coordination environment. It is coordinated by two water molecules and two O atoms of bridging glycine carboxylate groups in the basal plane, and by a sulfate O atom in the apical position. In complex (II), the CuIIcation has an octahedral coordination environment. It is coordinated by four sulfate O atoms, one of which bridges two CuIIcations, and two O atoms of bridging glycine carboxylate groups. In the crystal structure of (I), the one-dimensional polymers, extending along [001], are linkedviaN—H...O, O—H...O and bifurcated N—H...O,O hydrogen bonds, forming a three-dimensional framework. In the crystal structure of (II), the two-dimensional networks are linkedviabifurcated N—H...O,O hydrogen bonds involving the sulfate O atoms, forming a three-dimensional framework. In the crystal structures of both compounds, there are C—H...O hydrogen bonds present, which reinforce the three-dimensional frameworks.


IUCrData ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Christina Krabbe ◽  
Vinusuya Gock ◽  
Michael Lutter ◽  
Klaus Jurkschat

The reaction of sodium chloride with 2-[bis(2-hydroxyethyl)amino]ethan-1-ol results in the formation of the title salt {[Na{N(CH2CH2OH)3}]Cl} n . The polymeric structure is characterized by a sodium cation coordinated by one nitrogen and five oxygen atoms in a distorted octahedral environment. The resulting one-dimensional {—O—Na—O—Na—O}— coordination polymer extends parallel to [010] and is connected through the chloride counter-anion via O—H...Cl hydrogen bonding, giving rise to a two-dimensional supramolecular structure parallel to (001).


2014 ◽  
Vol 70 (7) ◽  
pp. 712-714
Author(s):  
Xiao-Min Hao ◽  
Gang Chen ◽  
Chang-Sheng Gu ◽  
Ji-Wei Liu

In the title coordination polymer, {[Cd(C6H8O4S)(C13H14N2)]·H2O}n, the CdIIatom displays a distorted octahedral coordination, formed by three carboxylate O atoms and one S atom from three different 3,3′-thiodipropionate ligands, and two N atoms from two different 4,4′-(propane-1,3-diyl)dipyridine ligands. The CdIIcentres are bridged through carboxylate O atoms of 3,3′-thiodipropionate ligands and through N atoms of 4,4′-(propane-1,3-diyl)dipyridine ligands to form two different one-dimensional chains, which intersect to form a two-dimensional layer. These two-dimensional layers are linked by S atoms of 3,3′-thiodipropionate ligands from adjacent layers to form a three-dimensional network.


Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title compounds,catena-poly[[[bis[(R)-propane-1,2-diamine-κ2N,N′]copper(II)]-μ-cyanido-κ2N:C-[tris(cyanido-κC)(nitroso-κN)iron(III)]-μ-cyanido-κ2C:N] monohydrate], {[Cu(Lpn)2][Fe(CN)5(NO)]·H2O}n, (I), and poly[[hexa-μ-cyanido-κ12C:N-hexacyanido-κ6C-hexakis[(R)-propane-1,2-diamine-κ2N,N′]dichromium(III)tricopper(II)] pentahydrate], {[Cu(Lpn)2]3[Cr(CN)6]2·5H2O}n, (II) [where Lpn = (R)-propane-1,2-diamine, C3H10N2], are new chiral cyanide-bridged bimetallic coordination polymers. The asymmetric unit of compound (I) is composed of two independent cation–anion units of {[Cu(Lpn)2][Fe(CN)5)(NO)]} and two water molecules. The FeIIIatoms have distorted octahedral geometries, while the CuIIatoms can be considered to be pentacoordinate. In the crystal, however, the units align to form zigzag cyanide-bridged chains propagating along [101]. Hence, the CuIIatoms have distorted octahedral coordination spheres with extremely long semicoordination Cu—N(cyanido) bridging bonds. The chains are linked by O—H...N and N—H...N hydrogen bonds, forming two-dimensional networks parallel to (010), and the networks are linkedviaN—H...O and N—H...N hydrogen bonds, forming a three-dimensional framework. Compound (II) is a two-dimensional cyanide-bridged coordination polymer. The asymmetric unit is composed of two chiral {[Cu(Lpn)2][Cr(CN)6]}−anions bridged by a chiral [Cu(Lpn)2]2+cation and five water molecules of crystallization. Both the CrIIIatoms and the central CuIIatom have distorted octahedral geometries. The coordination spheres of the outer CuIIatoms of the asymmetric unit can be considered to be pentacoordinate. In the crystal, these units are bridged by long semicoordination Cu—N(cyanide) bridging bonds forming a two-dimensional network, hence these CuIIatoms now have distorted octahedral geometries. The networks, which lie parallel to (10-1), are linkedviaO—H...O, O—H...N, N—H...O and N—H...N hydrogen bonds involving all five non-coordinating water molecules, the cyanide N atoms and the NH2groups of the Lpn ligands, forming a three-dimensional framework.


IUCrData ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kai-Long Zhong ◽  
Guo-Qing Cao ◽  
Wei Song ◽  
Chao Ni

In the complex cation of the title salt, [Co(C12H8N2)3](C10H5O8)2·H2O, the CoII cation is situated on a twofold rotation axis and is coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10-phenanthroline (phen) ligands. In the crystal, the non-coordinating 2,4,5-tricarboxybenzoate anions interact with each other via O—H...O hydrogen bonds, generating a two-dimensional network parallel to (100). Adjacent sheets are connected by waterO—H...Ocarboxylate hydrogen bonds, resulting in a three-dimensional network structure that surrounds the complex cations.


Sign in / Sign up

Export Citation Format

Share Document