complex cation
Recently Published Documents


TOTAL DOCUMENTS

337
(FIVE YEARS 34)

H-INDEX

23
(FIVE YEARS 2)

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 95
Author(s):  
Despina Dermitzaki ◽  
Angeliki Panagiotopoulou ◽  
Michael Pissas ◽  
Yiannis Sanakis ◽  
Vassilis Psycharis ◽  
...  

The reaction of the Schiff base ligand o-OH-C6H4-CH=N-C(CH2OH)3, H4L, with Ni(O2CMe)2∙4H2O and lanthanide nitrate salts in a 4:2:1 ratio lead to the formation of the trinuclear complexes [Ni2Ln(H3L)4(O2CMe)2](NO3) (Ln = Dy (1), Ho (2), and Y (3)) which crystallize in the non-centrosymmetric space group Pna21. The complex cation consists of the three metal ions in an almost linear arrangement. The {Ni2Ln} moieties are bridged through two deprotonated Ophenolato groups from two different ligands. Each terminal NiII ion is bound to two ligands through their Ophenolato, the Nimino atoms and one of the protonated Oalkoxo groups in a distorted octahedral. The central lanthanide ion is coordinated to four Ophenolato oxygen from the four ligands, and four Ocarboxylato atoms from two acetates which are bound in the bidentate chelate mode, and the coordination polyhedron is biaugmented trigonal prism, which probably results in a non-centrosymmetric arrangement of the complexes in the lattice. The magnetic properties of 1–3 were studied and showed that 1 exhibits field induced slow magnetic relaxation.


Author(s):  
Dana-Céline Krause ◽  
Sebastian Mangelsen ◽  
Christian Näther ◽  
Wolfgang Bensch
Keyword(s):  

2021 ◽  
Vol 26 (1(77)) ◽  
pp. 85-96
Author(s):  
E. A. Chebanenko ◽  
O. V. Buchko ◽  
E. V. Afanasenko Afanasenko ◽  
I. I. Seifullina ◽  
E. E. Martsinko

This article is dedicated to the investigation of crystalline structure in the complex cation-anionic compounds Cu(Phen)2Cl]2[Ge(HCit)2]⋅6H2O (I), [Cu(Phen)3]2[Ge2(OH)(HTart)(μ-Tart)2]·11H2O (II), [CuCl(Phen)2]4[{Ge2(OH)2(μ-Tart)2}Cl2]·4Н2О (III), [Cu(Phen)3]2[(OH)2Ge2(μ-HXylar)4Ge2(μ-OH)2]·8H2O (IV), [CuCl(Phen)2]4[(OH)2Ge2(μ-HXylar)4Ge2(μ-OH)2]·8H2O (V) using Hirshfeld surface analysis. This method has showed itself as an effective tool for analysis of intermolecular interactions, such as hydrogen bonds or weaker C…H and С…Н…p connections. Three-dimensional picture of close interactions in the crystal was built for each of the compounds I–V, where short connections are red-colored, while others – weaker and shorter – are light areas and small spots. It was established that in the structures of all compounds different types of hydrogen bonds are presented: bifurcate connections, symmetrical О-Н…О, С-Н…С and asymmetrical ones with water molecules. Two-dimensional histograms – 2D-fingerprint plots, allowed to evaluate quantitively connections in the crystals and establish that H…O/O…H and H…H interactions make the biggest contribution to the total surface area. The presence of the big number of crystallization water molecules is determinant for the formation of complex system of hydrogen bonds and strengthening of the structure, that otherwise would be unstable because of the big size of cations and anions. Due to the fact, that all compounds have the same complexing agent Ge(IV), structure of the anion is determined by polydentate ligand. Obtained results are important for the further development of the water role in the processes of crystallization, crystal formation, electrical dissociation and, especially, dissolving of coordination compounds in biological systems.


Author(s):  
Dohyun Moon ◽  
Jong-Ha Choi

The crystal structure of the title complex, cis-[Cr(NCS)2(cyclam)]Br (cyclam = 1,4,8,11-tetraazacyclotetradecane, C10H24N4), has been determined from synchrotron X-ray data. The asymmetric unit contains one [Cr(NCS)2(cyclam)]+ cation and one bromide anion. The CrIII ion of the complex cation is coordinated by the four N atoms of the cyclam ligand and by two N-coordinating NCS groups in a cis arrangement, displaying a distorted octahedral coordination sphere. The Cr—N(cyclam) bond lengths are in the range 2.075 (3) to 2.081 (3) Å while the average Cr—N(NCS) bond length is 1.996 (16) Å. The macrocyclic cyclam moiety adopts the most stable cis-V conformation. The crystal structure is stabilized by intermolecular hydrogen bonds involving the cyclam N—H groups as donor groups, and the bromide anion and the S atom of one of the NCS ligands as acceptor groups.


2021 ◽  
Vol 8 (2) ◽  
pp. 025902
Author(s):  
Dong Zhang ◽  
Bingjun Zhu ◽  
Shiqi Ren ◽  
Qingru Wang ◽  
Qinglin Wang ◽  
...  

2021 ◽  
Author(s):  
Anandi Srinivasan ◽  
Rebecca A Musgrave ◽  
Mathieu Rouzieres ◽  
Rodolphe Clerac ◽  
John E. McGrady ◽  
...  

The linear trinuclear complex cation [Fe3(DpyF)4]2+ was prepared as [Fe3(DpyF)4](BF4)2·2CH3CN. With large Fe–Fe distances of 2.78 Å, this complex demonstrates intramolecular ferromagnetic coupling between the anisotropic FeII centers (J/kB =...


2021 ◽  
pp. 112-112
Author(s):  
Marko Rodic ◽  
Mirjana Radanovic ◽  
Dragana Gazdic ◽  
Vukadin Leovac ◽  
Berta Barta-Holló ◽  
...  

Utilizing X-ray crystallography the crystal and molecular structures of 2,6-diacetylpyridine bis(phenylhydrazone) (L) were determined. Energetics of the intermolecular interactions in the crystal structure was assessed with computational methods, revealing that dispersion interactions are dominant. The basic structural unit of the crystal packing is revealed to be the herring-bone type arrangement of L molecules. Assignation of the IR spectrum of L with the aid of DFT calculations was performed. Furthermore, new reactions of L with CuBr2 in different solvents are described, which led to the synthesis of the mixed Cu(II)-Cu(I) complex of the formula [CuIIL2][CuI2Br4] (1), and its structural characterization. In the complex cation, two molecules of tridentate N3 ligand are meridionally arranged in a very distorted octahedral environment of a Cu(II) ion. In [Cu2Br4]2-, bromide ions are arranged in a trigonal-planar geometry around each copper(I) atom. Finally, for the ligand, 1, and the previously synthesized complex [CuL2]Br2, thermal properties were examined. The thermal stability of the com-plexes is lower than that of the ligand and decreases in order: L (250?C) > > [CuL2]Br2 (221?C) > [CuIIL2][CuI2Br4] (212?C). The differences in thermal stability of the complexes are due to differences in packing efficacy of the constitutional ions.


2021 ◽  
Author(s):  
Paulina Peksa ◽  
Andrzej Nowok ◽  
Anna Gągor ◽  
Miroslaw Maczka ◽  
Marek Drozd ◽  
...  

A combination of structural, dielectric and calorimetric studies is used to describe a highly atypical behaviour of novel hybrid formate [NH3(CH2)3NH2(CH2)3NH3][Mn(HCOO)3]3, incorporating large triprotonated molecular cation. Two successive phase transitions,...


Sign in / Sign up

Export Citation Format

Share Document