A trimethylsulfonium salt with a novel polymeric cadmate anion

2013 ◽  
Vol 69 (10) ◽  
pp. 1128-1131 ◽  
Author(s):  
Ming-Liang Liu

The title salt,catena-poly[trimethylsulfonium [μ2-chlorido-di-μ2-thiocyanato-cadmate(II)]] {(C3H9S)[CdCl(NCS)2]}n, consists of trimethylsulfonium cations sandwiched between layers of a two-dimensional polyanion. The CdIIcentre displays a distorted octahedral environment coordinated by two bridging Cl atoms, two thiocyanate N atoms and two thiocyanate S atoms. The thiocyanate groups adopt the μ-1,3-coordination mode and bridge the CdIIcentres into a one-dimensional zigzag chain extended along the [110] direction. The CdIIcentres of the zigzag chains are crosslinked by bridging Cl atoms, forming a two-dimensional polyanion. The two-dimensional anions are linked to layers of trimethylsulfonium cations by weak intermolecular C—H...Cl hydrogen bonds, forming the three-dimensional structure.

Author(s):  
Magdalena Wilk ◽  
Jan Janczak ◽  
Veneta Videnova-Adrabinska

The rigid organic ligand (pyridine-3,5-diyl)diphosphonic acid has been used to create the title novel three-dimensional coordination polymer, [Ca(C5H6NO6P2)2(H2O)]n. The six-coordinate calcium ion is in a distorted octahedral environment, formed by five phosphonate O atoms from five different (pyridin-1-ium-3,5-diyl)diphosphonate ligands, two of which are unique, and one water O atom. Two crystallographically independent acid monoanions,L1 andL2, serve to link metal centres using two different coordination modes,viz.η2μ2and η3μ3, respectively. The latter ligand,L2, forms a strongly undulated two-dimensional framework parallel to the crystallographicbcplane, whereas the former ligand,L1, is utilized in the formation of one-dimensional helical chains in the [010] direction. The two sublattices ofL1 andL2 interweave at the Ca2+ions to form a three-dimensional framework. In addition, multiple O—H...O and N—H...O hydrogen bonds stabilize the three-dimensional coordination network. Topologically, the three-dimensional framework can be simplified as a very unusual (2,3,5)-connected three-nodal net represented by the Schläfli symbol (4·82)(4·88·10)(8).


2012 ◽  
Vol 68 (6) ◽  
pp. m152-m155 ◽  
Author(s):  
Yan-an Li ◽  
Qi-Kui Liu ◽  
Jian-Ping Ma ◽  
Yu-Bin Dong

The molecule of 3,5-bis{4-[(benzimidazol-1-yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine (L), C30H24N8, has an antiperiplanar conformation of the two terminal benzimidazole groups and forms two-dimensional networks along the crystallographicbaxisviatwo types of intermolecular hydrogen bonds. However, incatena-poly[[[dichloridomercury(II)]-μ-3,5-bis{4-[(benzimidazol-1-yl)methyl]phenyl}-4H-1,2,4-triazol-4-amine] dichloromethane hemisolvate], {[HgCl2(C30H24N8)]·0.5CH2Cl2}n, synthesized by the combination ofLwith HgCl2, theLligand adopts a synperiplanar conformation. The HgIIcation lies in a distorted tetrahedral environment, which is defined by two N atoms and two Cl atoms to form a one-dimensional zigzag chain. These zigzag chains stackviahydrogen bonds which expand the dimensionality of the structure from one to two.


2018 ◽  
Vol 74 (10) ◽  
pp. 1128-1132 ◽  
Author(s):  
Yan-Ju Liu ◽  
Di Cheng ◽  
Ya-Xue Li ◽  
Jun-Di Zhang ◽  
Huai-Xia Yang

Imidazole-4,5-dicarboxylic acid (H3IDC) and its derivatives are widely used in the preparation of new coordination polymers owing to their versatile bridging coordination modes and potential hydrogen-bonding donors and acceptors. A new one-dimensional coordination polymer, namely catena-poly[[diaquacadmium(II)]-μ3-2,2′-(1,2-phenylene)bis(1H-imidazole-4,5-dicarboxylato)], [Cd(C16H6N4O8)0.5(H2O)2] n or [Cd(H2Phbidc)1/2(H2O)2] n , has been synthesized by the reaction of Cd(OAc)2·2H2O (OAc is acetate) with 2,2′-(1,2-phenylene)bis(1H-imidazole-4,5-dicarboxylic acid) (H6Phbidc) under solvothermal conditions. In the polymer, one type of Cd ion (Cd1) is six-coordinated by two N atoms and two O atoms from one H2Phbidc4− ligand and by two O atoms from two water molecules, forming a significantly distorted octahedral CdN2O4 coordination geometry. In contrast, the other type of Cd ion (Cd2) is six-coordinated by two N atoms and two O atoms from two symmetry-related H2Phbidc4− ligands and by two O atoms from two symmetry-related water molecules, leading to a more regular octahedral coordination geometry. The Cd1 and Cd2 ions are linked by H2Phbidc4− ligands into a one-dimensional chain which runs parallel to the b axis. In the crystal, the one-dimensional chains are connected through hydrogen bonds, generating a two-dimensional layered structure parallel to the ab plane. Adjacent layers are further linked by hydrogen bonds, forming a three-dimensional structure in the solid state.


2014 ◽  
Vol 70 (8) ◽  
pp. m298-m299
Author(s):  
Elumalai Govindhan ◽  
A. S. Ganeshraja ◽  
B. Bhavana ◽  
Krishnamoorthy Anbalagan ◽  
Arunachalam SubbiahPandi

The title compound, {[Zn(C3H3N2)(C3H4N2)2]NO3}n, is a one-dimensional coordination polymer along [01-1] with the ZnIIatom coordinating to four imidazole/imidazolide rings. The ZnIIatom has a regular tetrahedral geometry with the planes of the two monodentate imidazole rings inclined to one another by 87.94 (17)°, while the planes of the bridging imidazolide rings are inclined to one another by 39.06 (17)°. In the crystal, the chains are linkedviabifurcated N—H...(O,O) hydrogen bonds, forming sheets parallel to (001). These two-dimensional networks are linkedviaC—H...O hydrogen bonds and a C—H...π interaction, forming a three-dimensional structure.


2014 ◽  
Vol 70 (3) ◽  
pp. m83-m83 ◽  
Author(s):  
Yaya Sow ◽  
Libasse Diop ◽  
Manuel A. Fernandes ◽  
Helen Stoeckli-Evans

The title compound, [Sn(CH3)2Cl2(CH4N2S)2], crystallizes with two half-molecules in the asymmetric unit. Both molecules are completed by inversion symmetry with the two SnIVatoms located on inversion centers. The metal atoms have distorted octahedral coordination environments defined by two Cl atoms, two C atoms of methyl groups and two thiourea S atoms. In the crystal, molecules are linkedviaN—H...Cl and N—H...S hydrogen bonds, forming a three-dimensional structure.


2006 ◽  
Vol 62 (7) ◽  
pp. m1722-m1724 ◽  
Author(s):  
Xin Zhuo ◽  
Zhao-Rui Pan ◽  
Zuo-Wei Wang ◽  
Yi-Zhi Li ◽  
He-Gen Zheng

In the title compound, {[Co(C8H4O5)(C10H8N2)]·2H2O]} n or {[Co(OH-BDC)(2,2′-bipy)]·2H2O]} n (where OH-H2BDC is 5-hydroxyisophthalic acid and 2,2′-bipy is 2,2′-bipyridine), the Co atoms are chelated by two N atoms from the 2,2′-bipy ligand and by four O atoms from OH-BDC ligands in a highly distorted octahedral geometry. OH-BDC acts as a tetradentate ligand, with one carboxylate group chelating one Co atom and the other binding in a monodentate fashion to two other Co atoms to form a one-dimensional zigzag chain. In the crystal structure, one of the solvent water molecules lies on a crystallographic twofold axis. The one-dimensional molecular chains are assembled into a two-dimensional network via O—H...O hydrogen-bonding interactions, while π–π stacking interactions generate a three-dimensional open framework between the two-dimensional networks.


Author(s):  
Olha Sereda ◽  
Helen Stoeckli-Evans

The title compounds,catena-poly[[[bis[(R)-propane-1,2-diamine-κ2N,N′]copper(II)]-μ-cyanido-κ2N:C-[tris(cyanido-κC)(nitroso-κN)iron(III)]-μ-cyanido-κ2C:N] monohydrate], {[Cu(Lpn)2][Fe(CN)5(NO)]·H2O}n, (I), and poly[[hexa-μ-cyanido-κ12C:N-hexacyanido-κ6C-hexakis[(R)-propane-1,2-diamine-κ2N,N′]dichromium(III)tricopper(II)] pentahydrate], {[Cu(Lpn)2]3[Cr(CN)6]2·5H2O}n, (II) [where Lpn = (R)-propane-1,2-diamine, C3H10N2], are new chiral cyanide-bridged bimetallic coordination polymers. The asymmetric unit of compound (I) is composed of two independent cation–anion units of {[Cu(Lpn)2][Fe(CN)5)(NO)]} and two water molecules. The FeIIIatoms have distorted octahedral geometries, while the CuIIatoms can be considered to be pentacoordinate. In the crystal, however, the units align to form zigzag cyanide-bridged chains propagating along [101]. Hence, the CuIIatoms have distorted octahedral coordination spheres with extremely long semicoordination Cu—N(cyanido) bridging bonds. The chains are linked by O—H...N and N—H...N hydrogen bonds, forming two-dimensional networks parallel to (010), and the networks are linkedviaN—H...O and N—H...N hydrogen bonds, forming a three-dimensional framework. Compound (II) is a two-dimensional cyanide-bridged coordination polymer. The asymmetric unit is composed of two chiral {[Cu(Lpn)2][Cr(CN)6]}−anions bridged by a chiral [Cu(Lpn)2]2+cation and five water molecules of crystallization. Both the CrIIIatoms and the central CuIIatom have distorted octahedral geometries. The coordination spheres of the outer CuIIatoms of the asymmetric unit can be considered to be pentacoordinate. In the crystal, these units are bridged by long semicoordination Cu—N(cyanide) bridging bonds forming a two-dimensional network, hence these CuIIatoms now have distorted octahedral geometries. The networks, which lie parallel to (10-1), are linkedviaO—H...O, O—H...N, N—H...O and N—H...N hydrogen bonds involving all five non-coordinating water molecules, the cyanide N atoms and the NH2groups of the Lpn ligands, forming a three-dimensional framework.


IUCrData ◽  
2019 ◽  
Vol 4 (1) ◽  
Author(s):  
Kai-Long Zhong ◽  
Guo-Qing Cao ◽  
Wei Song ◽  
Chao Ni

In the complex cation of the title salt, [Co(C12H8N2)3](C10H5O8)2·H2O, the CoII cation is situated on a twofold rotation axis and is coordinated in a distorted octahedral manner by six N atoms from three chelating 1,10-phenanthroline (phen) ligands. In the crystal, the non-coordinating 2,4,5-tricarboxybenzoate anions interact with each other via O—H...O hydrogen bonds, generating a two-dimensional network parallel to (100). Adjacent sheets are connected by waterO—H...Ocarboxylate hydrogen bonds, resulting in a three-dimensional network structure that surrounds the complex cations.


2006 ◽  
Vol 62 (4) ◽  
pp. m731-m733 ◽  
Author(s):  
Hong-Ping Xiao

In the title compound, [Zn(C8H4O5)(H2O)3] n , the ZnII atom is in a five-coordinated environment defined by three aqua O atoms and two carboxylate O atoms from two different 5-hydroxyisophthalate dianions. In the 5-hydroxyisophthalate dianions, two carboxylate groups coordinate two ZnII cations in a bidentate bridging coordination mode, forming a zigzag chain. In addition, O—H...O intermolecular hydrogen bonds link the chains into a three-dimensional network.


2014 ◽  
Vol 70 (3) ◽  
pp. m98-m99
Author(s):  
Olga Kovalchukova ◽  
Ali Sheikh Bostanabad ◽  
Adam Stash ◽  
Svetlana Strashnova ◽  
Igor Zyuzin

In the centrosymmetric title compound, [Ni(C7H6FN2O2)2(H2O)2], the NiIIcation is in a slightly distorted octahedral environment and is surrounded by four O atoms from the N—O groups of the organic ligands [Ni—O = 2.0179 (13) and 2.0283 (12) Å], and two water molecules [Ni—O = 2.0967 (14) Å]. TheN-(2-fluorobenzyl)-N-nitrosohydroxylaminate monoanions act as bidentate chelating ligands. In the crystal, the Ni cations in the columns are shifted in such a way that the coordinated water molecules are involved in the formation of hydrogen bonds with the O atoms of the organic species of neighbouring molecules. Thus, a two-dimensional network parallel to (100) is built up by hydrogen-bonded molecules.


Sign in / Sign up

Export Citation Format

Share Document