A mixed chloride/trifluoromethanesulfonate ligand species in a ruthenium(II) complex

Author(s):  
Gustavo Santiso-Quinones ◽  
Rafael E. Rodriguez-Lugo

The compound [2-(aminomethyl)pyridine-κ2N,N′][chlorido/trifluoromethanesulfonato(0.91/0.09)][(10,11-η)-5H-dibenzo[a,d]cyclohepten-5-amine-κN](triphenylphosphane-κP)ruthenium(II) trifluoromethanesulfonate dichloromethane 0.91-solvate, [Ru(CF3SO3)0.09Cl0.91(C6H8N2)(C15H13N)(C18H15P)]CF3SO3·0.91CH2Cl2, belongs to a series of RuIIcomplexes that had been tested for transfer hydrogenation, hydrogenation of polar bonds and catalytic transfer hydrogenation. The crystal structure determination of this complex revealed disorder in the form of two different anionic ligands sharing the same coordination site, which other spectroscopic methods failed to characterize. The reduced catalytic activity of the title compound was not fully understood until the crystallographic data provided evidence for the mixed ligand species. The crystal structure clearly shows that the majority of the synthesized material has a chloride ligand present. Only a small portion of the material is the expected complex [RuII(OTf)(ampy)(η2-tropNH2)(PPh3)]OTf, where OTf is triflate or trifluoromethanesulfonate, ampy is 2-(aminomethyl)pyridine and tropNH2is 5H-dibenzo[a,d]cyclohepten-5-amine.

1981 ◽  
Vol 46 (12) ◽  
pp. 3063-3073 ◽  
Author(s):  
Jana Podlahová ◽  
Bohumil Kratochvíl ◽  
Vratislav Langer ◽  
Josef Šilha ◽  
Jaroslav Podlaha

The equilibria and mechanism of addition of protons to the ethylenediphosphinetetraacetate anion (L4-) were studied in solution by the UV, IR, 1H and 31P NMR spectroscopic methods. A total of six protons can be bonded to the anion. They are added stepwise, first with partial formation of zwitterions containing P-H bonds, which then dissociate with formation of the free acid, H4L, where all four protons are bonded in carboxyl groups. The formation of zwitterions is strongly dependent on the concentration. In the final stage, the acid bonds two additional protons to form the bis-phosphonium cation, H6L2+. A number of isostructural salts containing this cation, H4L.2 HX (X = Cl, Br, I), have been prepared. The X-ray crystal structure determination of the bromide confirmed the expected arrangement. The bromide crystals are monoclinic, a = 578.2, b = 1 425.0, c = 1 046.7 pm, β = 103.07° with a space group of P21/c, Z = 2. The final R factor was 0.059 based on 1 109 observed reflections. The structure consists of H6L2+ cations containing protons bonded to phosphorus atoms (P-H distance 134 pm) and of bromide anions, located in gaps which are also sufficiently large for I- anions in the isostructural iodide. The interbonding of phosphonium cations proceeds through hydrogen bonds, C-OH...O=C, in which the O...O distance is 275.3 pm.


2021 ◽  
pp. 120429
Author(s):  
Christian O. Blanco ◽  
Ligia Llovera ◽  
Alberto Herrera ◽  
Romano Dorta ◽  
Giuseppe Agrifoglio ◽  
...  

Author(s):  
Bolla Srinivasarao ◽  
Yogita Y ◽  
Dhana Lakshmi Darsi ◽  
Krishna Kumari Pamula ◽  
N. Lingaiah

One pot conversion of furfural to -valerolactone by transfer hydrogenation has been achieved over bifunctional Zr and TPA located in mesoporous silica catalysts. Different catalysts with TPA and ZrO2 located...


2018 ◽  
Vol 7 (6) ◽  
pp. 1107-1112 ◽  
Author(s):  
Yunrui Zhang ◽  
Yingying Zhai ◽  
Minzhe Chu ◽  
Li Huo ◽  
Haijun Wang ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (64) ◽  
pp. 59753-59761 ◽  
Author(s):  
A. M. Hengne ◽  
B. S. Kadu ◽  
N. S. Biradar ◽  
R. C. Chikate ◽  
C. V. Rode

A bifunctional Ni/MMT catalyst for catalytic transfer hydrogenation of levulinic acid to γ-valerolactone with complete conversion and selectivity.


Sign in / Sign up

Export Citation Format

Share Document