scholarly journals Structural insights into the mechanisms of substrate recognition and catalysis for the N-methyltransferases involved in benzylisoquinoline alkaloid metabolism

2021 ◽  
Vol 77 (a1) ◽  
pp. a299-a299
Author(s):  
Dean Lang ◽  
Jeremy Morris ◽  
Peter Facchini ◽  
Kenneth Ng
Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 957
Author(s):  
Seung-Hyeon Seok

Protein phosphorylation is one of the most widely observed and important post-translational modification (PTM) processes. Protein phosphorylation is regulated by protein kinases, each of which covalently attaches a phosphate group to an amino acid side chain on a serine (Ser), threonine (Thr), or tyrosine (Tyr) residue of a protein, and by protein phosphatases, each of which, conversely, removes a phosphate group from a phosphoprotein. These reversible enzyme activities provide a regulatory mechanism by activating or deactivating many diverse functions of proteins in various cellular processes. In this review, their structures and substrate recognition are described and summarized, focusing on Ser/Thr protein kinases and protein Ser/Thr phosphatases, and the regulation of protein structures by phosphorylation. The studies reviewed here and the resulting information could contribute to further structural, biochemical, and combined studies on the mechanisms of protein phosphorylation and to drug discovery approaches targeting protein kinases or protein phosphatases.


Author(s):  
Jui-Chieh Yin ◽  
Chun-Hsien Fei ◽  
Yen-Chen Lo ◽  
Yu-Yuan Hsiao ◽  
Jyun-Cyuan Chang ◽  
...  

2015 ◽  
Vol 197 (6) ◽  
pp. 1125-1134 ◽  
Author(s):  
Chun-Yang Li ◽  
Xiu-Lan Chen ◽  
Qi-Long Qin ◽  
Peng Wang ◽  
Wei-Xin Zhang ◽  
...  

ABSTRACTPeptide uptake is important for nutrition supply for marine bacteria. It is also an important step in marine nitrogen cycling. However, how marine bacteria absorb peptides is still not fully understood. DppA is the periplasmic dipeptide binding protein of dipeptide permease (Dpp; an important peptide transporter in bacteria) and exclusively controls the substrate specificity of Dpp. Here, the substrate binding specificity of deep-seaPseudoalteromonassp. strain SM9913 DppA (PsDppA) was analyzed for 25 different dipeptides with various properties by using isothermal titration calorimetry measurements.PsDppA showed binding affinities for 8 dipeptides. To explain the multispecific substrate recognition mechanism ofPsDppA, we solved the crystal structures of unligandedPsDppA and ofPsDppA in complex with 4 different types of dipeptides (Ala-Phe, Met-Leu, Gly-Glu, and Val-Thr).PsDppA alternates between an “open” and a “closed” form during substrate binding. Structural analyses of the 4PsDppA-substrate complexes combined with mutational assays indicate thatPsDppA binds to different substrates through a precise mechanism: dipeptides are bound mainly by the interactions between their backbones andPsDppA, in particular by anchoring their N and C termini through ion-pair interactions; hydrophobic interactions are important in binding hydrophobic dipeptides; and Lys457 is necessary for the binding of dipeptides with a C-terminal glutamic acid or glutamine. Additionally, sequence alignment suggests that the substrate recognition mechanism ofPsDppA may be common in Gram-negative bacteria. All together, our results provide structural insights into the multispecific substrate recognition mechanism of marine Gram-negative bacterial DppA, which provides a better understanding of the mechanisms of marine bacterial peptide uptake.IMPORTANCEPeptide uptake plays a significant role in nutrition supply for marine bacteria. It is also an important step in marine nitrogen cycling. However, how marine bacteria recognize and absorb peptides is still unclear. This study analyzed the substrate binding specificity of deep-seaPseudoalteromonassp. strain SM9913 DppA (PsDppA; the dipeptide-binding protein of dipeptide permease) and solved the crystal structures of unligandedPsDppA andPsDppA in complex with 4 different types of dipeptides. The multispecific recognition mechanism ofPsDppA for dipeptides is explained based on structural and mutational analyses. We also find that the substrate-binding mechanism ofPsDppA may be common in Gram-negative bacteria. This study sheds light on marine Gram-negative bacterial peptide uptake and marine nitrogen cycling.


2010 ◽  
Vol 400 (1) ◽  
pp. 108-120 ◽  
Author(s):  
Julien Delmas ◽  
David Leyssene ◽  
Damien Dubois ◽  
Catherine Birck ◽  
Emilie Vazeille ◽  
...  

EMBO Reports ◽  
2013 ◽  
Vol 14 (9) ◽  
pp. 804-810 ◽  
Author(s):  
Fatma Guettou ◽  
Esben M Quistgaard ◽  
Lionel Trésaugues ◽  
Per Moberg ◽  
Caroline Jegerschöld ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document