amino acid side chain
Recently Published Documents


TOTAL DOCUMENTS

229
(FIVE YEARS 41)

H-INDEX

39
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Tamara Matthyssen ◽  
Wenyi Li ◽  
James A. Holden ◽  
Jason C. Lenzo ◽  
Sara Hadjigol ◽  
...  

Antimicrobial peptides (AMPs) are found in nearly all living organisms, show broad spectrum antibacterial activity, and can modulate the immune system. Furthermore, they have a very low level of resistance induction in bacteria, which makes them an ideal target for drug development and for targeting multi-drug resistant bacteria ‘Superbugs’. Despite this promise, AMP therapeutic use is hampered as typically they are toxic to mammalian cells, less active under physiological conditions and are susceptible to proteolytic degradation. Research has focused on addressing these limitations by modifying natural AMP sequences by including e.g., d-amino acids and N-terminal and amino acid side chain modifications to alter structure, hydrophobicity, amphipathicity, and charge of the AMP to improve antimicrobial activity and specificity and at the same time reduce mammalian cell toxicity. Recently, multimerisation (dimers, oligomer conjugates, dendrimers, polymers and self-assembly) of natural and modified AMPs has further been used to address these limitations and has created compounds that have improved activity and biocompatibility compared to their linear counterparts. This review investigates how modifying and multimerising AMPs impacts their activity against bacteria in planktonic and biofilm states of growth.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 55
Author(s):  
Linda Celeste Montemiglio ◽  
Elena Gugole ◽  
Ida Freda ◽  
Cécile Exertier ◽  
Lucia D’Auria ◽  
...  

Substrate binding to the cytochrome P450 OleP is coupled to a large open-to-closed transition that remodels the active site, minimizing its exposure to the external solvent. When the aglycone substrate binds, a small empty cavity is formed between the I and G helices, the BC loop, and the substrate itself, where solvent molecules accumulate mediating substrate-enzyme interactions. Herein, we analyzed the role of this cavity in substrate binding to OleP by producing three mutants (E89Y, G92W, and S240Y) to decrease its volume. The crystal structures of the OleP mutants in the closed state bound to the aglycone 6DEB showed that G92W and S240Y occupied the cavity, providing additional contact points with the substrate. Conversely, mutation E89Y induces a flipped-out conformation of this amino acid side chain, that points towards the bulk, increasing the empty volume. Equilibrium titrations and molecular dynamic simulations indicate that the presence of a bulky residue within the cavity impacts the binding properties of the enzyme, perturbing the conformational space explored by the complexes. Our data highlight the relevance of this region in OleP substrate binding and suggest that it represents a key substrate-protein contact site to consider in the perspective of redirecting its activity towards alternative compounds.


2021 ◽  
Author(s):  
Phil Servatius ◽  
Uli Kazmaier

A peptide Claisen rearrangement is used as key step to generate a tetrapeptide with a C-terminal double unsaturated side chain. Activation and cyclization give direct access to cyclopeptides related to naturally occurring histone deacetylases (HDAC) inhibitors Cyl-1 and Cyl-2. Late stage modifications on the unsaturated amino acid side chain allow the introduction of functionalities which might coordinate to metal ions in the active center of metalloproteins, such as histone deacetylases.


2021 ◽  
Author(s):  
Binhan Hao ◽  
Wenjie Zhou ◽  
Steven M Theg

The twin-arginine translocation (Tat) pathway utilizes the proton-motive force (PMF) to transport folded proteins across cytoplasmic membranes in bacteria and archaea, as well as across the thylakoid membrane in plants and the inner membrane in mitochondria. In most species, the minimal components required for Tat activity consist of three subunits, TatA, TatB, and TatC. Previous studies have shown that a polar amino acid is present at the N-terminus of the TatA transmembrane helix (TMH) across many different species. In order to systematically assess the functional importance of this polar amino acid in the TatA TMH in Escherichia coli, a complete set of 19-amino-acid substitutions was examined. Unexpectedly, although being preferred overall, our experiments suggest that the polar amino acid is not necessary for a functional TatA. Hydrophobicity and helix stabilizing properties of this polar amino acid were found to be highly correlated with the Tat activity. Specifically, change in charge status of the amino acid side chain due to pH resulted in a shift in hydrophobicity, which was demonstrated to impact the Tat transport activity. Furthermore, a four-residue motif at the N-terminus of the TatA TMH was identified by sequence alignment. Using a biochemical approach, the N-terminal motif was found to be functionally significant, with evidence indicating a potential role in the preference for utilizing different PMF components. Taken together, these findings yield new insights into the functionality of TatA and its potential role in the Tat transport mechanism.


2021 ◽  
Author(s):  
Sayed Mehedi Azim ◽  
Alok Sharma ◽  
Swakkhar Shatabda ◽  
Abdollah Dehzangi

Abstract AMPylation is an emerging post-translational modification that occurs on the hydroxyl group of threonine, serine, or tyrosine via a phosphodiester bond. AMPylators catalyze this process as covalent attachment of adenosine monophosphate to the amino acid side chain of a peptide. Recent studies have shown that this post-translational modification is directly responsible for regulation of neurodevelopment and neurodegeneration and also involved in many physiological processes. Despite the importance of this post-translational modification, there is no peptide sequence dataset available for conducting computational analysis. Therefore, so far, no computational approach has been proposed for predicting AMPylation. In this study, we introduce a new dataset of this distinct post-translational modification and develop a new machine learning tool using a deep convolutional neural network called DeepAmp to predict AMPylation sites in proteins. DeepAmp achieves 77.7%, 79.1%, 76.8%, and 0.55 in terms of Accuracy, Sensitivity, Specificity, and Matthews Correlation Coefficient (MCC) for AMPylation site prediction task, respectively. As the first machine learning model, DeepAmp demonstrate promising results which highlight its potential to solve this problem. Our presented dataset and DeepAmp as a standalone predictor are publicly available at https://github.com/MehediAzim/DeepAmp


2021 ◽  
Vol 7 (10) ◽  
pp. 875
Author(s):  
Manuela Gómez-Gaviria ◽  
Ana P. Vargas-Macías ◽  
Laura C. García-Carnero ◽  
Iván Martínez-Duncker ◽  
Héctor M. Mora-Montes

Protein glycosylation is a highly conserved post-translational modification among organisms. It plays fundamental roles in many biological processes, ranging from protein trafficking and cell adhesion to host–pathogen interactions. According to the amino acid side chain atoms to which glycans are linked, protein glycosylation can be divided into two major categories: N-glycosylation and O-glycosylation. However, there are other types of modifications such as the addition of GPI to the C-terminal end of the protein. Besides the importance of glycoproteins in biological functions, they are a major component of the fungal cell wall and plasma membrane and contribute to pathogenicity, virulence, and recognition by the host immunity. Given that this structure is absent in host mammalian cells, it stands as an attractive target for developing selective compounds for the treatment of fungal infections. This review focuses on describing the relationship between protein glycosylation and the host–immune interaction in medically relevant fungal species.


Biomolecules ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1357
Author(s):  
Matthijs J. van Haren ◽  
Yongzhi Gao ◽  
Ned Buijs ◽  
Roberto Campagna ◽  
Davide Sartini ◽  
...  

A recently discovered bisubstrate inhibitor of Nicotinamide N-methyltransferase (NNMT) was found to be highly potent in biochemical assays with a single digit nanomolar IC50 value but lacking in cellular activity. We, here, report a prodrug strategy designed to translate the observed potent biochemical inhibitory activity of this inhibitor into strong cellular activity. This prodrug strategy relies on the temporary protection of the amine and carboxylic acid moieties of the highly polar amino acid side chain present in the bisubstrate inhibitor. The modification of the carboxylic acid into a range of esters in the absence or presence of a trimethyl-lock (TML) amine protecting group yielded a range of candidate prodrugs. Based on the stability in an aqueous buffer, and the confirmed esterase-dependent conversion to the parent compound, the isopropyl ester was selected as the preferred acid prodrug. The isopropyl ester and isopropyl ester-TML prodrugs exhibit improved cell permeability, which also translates to significantly enhanced cellular activity as established using assays designed to measure the enzymatic activity of NNMT in live cells.


Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 957
Author(s):  
Seung-Hyeon Seok

Protein phosphorylation is one of the most widely observed and important post-translational modification (PTM) processes. Protein phosphorylation is regulated by protein kinases, each of which covalently attaches a phosphate group to an amino acid side chain on a serine (Ser), threonine (Thr), or tyrosine (Tyr) residue of a protein, and by protein phosphatases, each of which, conversely, removes a phosphate group from a phosphoprotein. These reversible enzyme activities provide a regulatory mechanism by activating or deactivating many diverse functions of proteins in various cellular processes. In this review, their structures and substrate recognition are described and summarized, focusing on Ser/Thr protein kinases and protein Ser/Thr phosphatases, and the regulation of protein structures by phosphorylation. The studies reviewed here and the resulting information could contribute to further structural, biochemical, and combined studies on the mechanisms of protein phosphorylation and to drug discovery approaches targeting protein kinases or protein phosphatases.


2021 ◽  
Author(s):  
Márton A. Simon ◽  
Éva Bartus ◽  
Beáta Mag ◽  
Eszter Boros ◽  
Lea Roszjár ◽  
...  

Abstract S100 proteins are small, typically homodimeric, vertebrate-specific EF-hand proteins that establish Ca2+-dependent protein-protein interactions in the intra- and extracellular environment and are overexpressed in various pathologies. There are about 20 distinct human S100 proteins with numerous potential partner proteins. Here, we used a quantitative holdup assay to measure affinity profiles of most members of the S100 protein family against a library of chemically synthetized foldamers. The profiles allowed us to quantitatively map the binding promiscuity of each member towards the foldamer library. Since the library was designed to systematically contain most binary natural amino acid side chain combinations, the data also provide insight into the promiscuity of each S100 protein towards all potential naturally occurring S100 partners in the human proteome. Such information will be precious for future drug design to interfere with S100 related pathologies.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (7) ◽  
pp. e1009651
Author(s):  
Aaron D. Besterman ◽  
Thorsten Althoff ◽  
Peter Elfferich ◽  
Irma Gutierrez-Mejia ◽  
Joshua Sadik ◽  
...  

Smith-Kingsmore syndrome (SKS) is a rare neurodevelopmental disorder characterized by macrocephaly/megalencephaly, developmental delay, intellectual disability, hypotonia, and seizures. It is caused by dominant missense mutations in MTOR. The pathogenicity of novel variants in MTOR in patients with neurodevelopmental disorders can be difficult to determine and the mechanism by which variants cause disease remains poorly understood. We report 7 patients with SKS with 4 novel MTOR variants and describe their phenotypes. We perform in vitro functional analyses to confirm MTOR activation and interrogate disease mechanisms. We complete structural analyses to understand the 3D properties of pathogenic variants. We examine the accuracy of relative accessible surface area, a quantitative measure of amino acid side-chain accessibility, as a predictor of MTOR variant pathogenicity. We describe novel clinical features of patients with SKS. We confirm MTOR Complex 1 activation and identify MTOR Complex 2 activation as a new potential mechanism of disease in SKS. We find that pathogenic MTOR variants disproportionately cluster in hotspots in the core of the protein, where they disrupt alpha helix packing due to the insertion of bulky amino acid side chains. We find that relative accessible surface area is significantly lower for SKS-associated variants compared to benign variants. We expand the phenotype of SKS and demonstrate that additional pathways of activation may contribute to disease. Incorporating 3D properties of MTOR variants may help in pathogenicity classification. We hope these findings may contribute to improving the precision of care and therapeutic development for individuals with SKS.


Sign in / Sign up

Export Citation Format

Share Document