Incommensurately modulated crystal structure of α′ (O′3)-type sodium cobalt oxide Na x CoO2 (x ∼ 0.78)

Author(s):  
Yuzuru Miyazaki ◽  
Naoki Igawa ◽  
Kunio Yubuta

A single-phase sample of α′ (O′3)-type layered sodium cobalt oxide Na x CoO2 (x ∼ 0.78) was prepared and its incommensurately modulated crystal structure was analyzed using the (3+1)-dimensional superspace approach to the powder neutron diffraction data. The crystal structure of the cobaltate is accurately described based on the superspace group C2/m(α0γ)00, wherein the positions of Na atoms are most significantly modulated in the monoclinic a direction to form an ordered arrangement. Such a displacive modulation causes a quasi-periodic shift of Na atoms from the centers of the NaO6 polyhedra between undulated CoO2 sheets, changing the form of the NaO6 polyhedron from an octahedral coordination (O) to a trigonal prismatic (P) one, via an intermediate capped trigonal prismatic NaO7 coordination (C). At the positions where the Na atoms are most significantly shifted, the neighboring Na atoms are located at almost touching distances. However, the occupation factor of Na atoms becomes zero at such positions, yielding Na-deficient sites V Na, sandwiched either between C and P, or C and C-type polyhedra.

2006 ◽  
Vol 62 (6) ◽  
pp. 972-978 ◽  
Author(s):  
M. H. Sørby ◽  
A. E. Gunnæs ◽  
O. M. Løvvik ◽  
H. W. Brinks ◽  
H. Fjellvåg ◽  
...  

The crystal structure of Zr2NiD4.5 has been determined by a combination of synchrotron radiation powder X-ray diffraction, electron diffraction and powder neutron diffraction data. Deuterium ordering results in a triclinic supercell given by a super = 6.81560 (7), b super = 8.85137 (9), c super = 8.88007 (10) Å, αsuper = 79.8337 (8), βsuper = 90.0987 (9), γsuper = 90.3634 (9)°, which relates to the non-super unit cell as a super = −a, b super = −b − c, c super = −b + c. The centrosymmetric and fully ordered deuterium sublattice was determined by simulated annealing and Rietveld refinement. Deuterium was found to occupy three types of tetrahedral sites: two that are coordinated by four Zr atoms and one that is coordinated by three Zr atoms and one Ni atom. All D—D distances are longer than 2 Å. The feasibility of the crystal structure was supported by density functional theory calculations.


1994 ◽  
Vol 48 ◽  
pp. 294-297 ◽  
Author(s):  
Helmer Fjellvåg ◽  
Pavel Karen ◽  
Ülo Langel ◽  
Tamas Bartfai ◽  
Anders Undén ◽  
...  

1988 ◽  
Vol 42a ◽  
pp. 144-147 ◽  
Author(s):  
H. Fjellvåg ◽  
P. Karen ◽  
A. Kjekshus ◽  
G. Vicentini ◽  
L. B. Zinner ◽  
...  

Author(s):  
C. A. Bateman ◽  
A.Z. Ringwelski ◽  
R.W. Broach

Gamma (γ) alumina is referred to as a defect spinel because it has a tetragonally distorted spinel structure (AB2O4) and an insufficient number of cations to fill all cation sites. In the spinel structure, the oxygen lattice is cubic close packed with A- and B-site cations in tetrahedral and octahedral coordination, respectively. The 2l⅓ Al atoms per unit cell of γ alumina can distribute themselves across 16 octahedral and 8 tetrahedral sites.The literature differs on where the 2⅔ cation vacancies per unit cell are located. Wilson and McConnell proposed that the vacancies in γ alumina, as first formed by calcining boehmite, are predominantly on the tetrahedral lattice but, with further heat treatment, move to occupy random positions on both octahedral and tetrahedral lattices. One study using NMR showed that the vacancies lay exclusively on the tetrahedral lattice, independent of the calcination temperature. A more-recent study using Rietveld refinement of powder neutron diffraction data suggested that both octahedral and tetrahedral lattices were partially occupied.


Sign in / Sign up

Export Citation Format

Share Document