scholarly journals 4-(4-Acetyl-5-methyl-1H-1,2,3-triazol-1-yl)benzonitrile: crystal structure and Hirshfeld surface analysis

2018 ◽  
Vol 74 (9) ◽  
pp. 1195-1200 ◽  
Author(s):  
Julio Zukerman-Schpector ◽  
Cássio da S. Dias ◽  
Ricardo S. Schwab ◽  
Mukesh M. Jotani ◽  
Edward R. T. Tiekink

The title compound, C12H10N4O, comprises a central 1,2,3-triazole ring (r.m.s. deviation = 0.0030 Å) flanked by N-bound 4-cyanophenyl and C-bound acetyl groups, which make dihedral angles of 54.64 (5) and 6.8 (3)° with the five-membered ring, indicating a twisted molecule. In the crystal, the three-dimensional architecture is sustained by carbonyl-C=O...π(triazoyl), cyano-C[triple-bond]N...π(triazoyl) (these interactions are shown to be attractive based on non-covalent interaction plots) and π–π stacking interactions [intercentroid separation = 3.9242 (9) Å]. An analysis of the Hirshfeld surface shows the important contributions made by H...H (35.9%) and N...H (26.2%) contacts to the overall surface, as well as notable contributions by O...H (9.9%), C...H (8.7%), C...C (7.3%) and C...N (7.2%) contacts.

IUCrData ◽  
2021 ◽  
Vol 6 (11) ◽  
Author(s):  
C. Selva Meenatchi ◽  
S. Athimoolam ◽  
J. Suresh ◽  
S. Raja Rubina ◽  
R. Ranjith Kumar ◽  
...  

In the title compound, C20H15ClN2O, the non-aromatic six-membered ring adopts a distorted envelope conformation with methylene-C atom nearest to the five-membered ring being the flap atom. The dihedral angle between the phenyl and chlorobenzene rings is 74.5 (1)°. The heterocyclic ring forms dihedral angles of 37.9 (1) and 64.3 (1)° with the phenyl and chlorobenzene rings, respectively. In the crystal, weak C—H...O interactions feature predominantly within the three-dimensional architecture. The intermolecular interactions are further analysed with the calculation of the Hirshfeld surfaces highlighting the prominent role of C—H...O interactions, along with H...H (36.8%) and C...H/H...C (26.5%) contacts.


Author(s):  
Nazariy T. Pokhodylo ◽  
Yurii Slyvka ◽  
Evgeny Goreshnik ◽  
Roman Lytvyn

The title compound, C17H7F8N3O, was obtained via the reaction of 1-azido-2,3,4,5,6-pentafluorobenzene with 4,4,4-trifluoro-1-(p-tolyl)butane-1,3-dione using triethylamine as a base catalyst and solvent. The dihedral angles between the pentafluorophenyl (A), triazole (B) and p-tolyl (C) rings are A/B = 62.3 (2), B/C = 43.9 (3) and A/C = 19.1 (3)°. In the crystal, the molecules are linked by C—H...F and C—H...O hydrogen bonds as well as by aromatic π–π stacking interactions into a three-dimensional network. To further analyse the intermolecular interactions, a Hirshfeld surface analysis was performed.


Author(s):  
Refaat M. Mahfouz ◽  
Zeynep Demircioğlu ◽  
Mohamed S. Abbady ◽  
Orhan Büyükgüngör

In the solid state, the title compound, C20H19N3O2, adopts the keto–amine tautomeric form, with the H atom attached to the N atom, which participates in an intramolecular N—H...O hydrogen bond with anS(6) ring motif. The dihedral angles between the pyrazole ring and the phenyl and benzene rings are 3.69 (10) and 46.47 (9)°, respectively. In the crystal, molecules are linked by weak C—H...O hydrogen bonds, generatingC(16) chains propagating in [301]. Weak aromatic π–π stacking interactions [centroid–centroid distances = 3.6123 (10) and 3.6665 (10) Å] link the chains into a three-dimensional network.


2018 ◽  
Vol 74 (7) ◽  
pp. 1035-1038 ◽  
Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Flavien A. A. Toze ◽  
Gunay Z. Mammadova ◽  
Humay M. Panahova

The three cyclohexenone rings of the title compound, C27H33N3O6, adopt slightly distorted envelope conformations, with the C atom bearing two methyl groups as the flap atom in each case. These cyclohexenone mean planes form dihedral angles of 87.41 (11), 70.73 (11) and 70.47 (11)° with the 1,3,5-triazine ring, while the dihedral angle between the cyclohexenone mean planes are 57.52 (12), 23.75 (12) and 53.21 (12)°. In the crystal, molecules are linked via C—H...O hydrogen bonds, forming a three-dimensional network.


2009 ◽  
Vol 65 (6) ◽  
pp. o1225-o1225
Author(s):  
Lu-Tong Yuan ◽  
Hai Zhang ◽  
Zuo-Xiang Wang ◽  
Zhi-Rong Qu

In the molecule of the title compound, C19H15N5, the dihedral angles formed by the plane of the triazole ring with those of the 2-pyridyl, 4-pyridyl andp-tolyl rings are 28.12 (10), 34.62 (10) and 71.43 (9)°, respectively. The crystal structure is consolidated by C—H...π hydrogen-bonding interactions and by π–π stacking interactions, with a centroid–centroid distance of 3.794 (4) Å.


2013 ◽  
Vol 69 (11) ◽  
pp. o1716-o1716
Author(s):  
S. Sreenivasa ◽  
B. S. Palakshamurthy ◽  
E Suresha ◽  
J. Tonannavar ◽  
Yenagi Jayashree ◽  
...  

The title compound, C14H12ClNO4S, crystallizes with two molecules in the asymmetric unit. The dihedral angles between the benzene rings are 89.68 (1) (molecule 1) and 82.9 (1)° (molecule 2). In each molecule, intramolecular N—H...O hydrogen bonds between the amide H atom and the methoxy O atom generateS(6) loops. In the crystal, molecule 2 is linked into inversion dimers through pairs of C—H...O interactions, forming anR22(8) ring motif. Molecules 1 and 2 are further linked along theb-axis direction through C—H...π interactions. The crystal structure is further stabilized by several π–π stacking interactions [centroid–centroid separations = 3.7793 (1), 3.6697 (1) and 3.6958 (1) Å], thus generating a three-dimensional architecture.


Author(s):  
Mayu Kanagawa ◽  
Tsunehisa Okuno

In the title compound, C10H7NO, the dihedral angle between the aromatic ring and the prop-2-yn-1-yloxy grouping is 9.47 (10)°. The bond lengths indicate electronic conjugation between the cyano group, the benzene ring and the propynyloxy oxygen atom. In the crystal, a hydrogen bond between the acetylenic C—H atom and the cyano nitrogen atom link the molecules into wave-like [30-1] C(11) chains. These chains are connected by Csp2—H...πac(πacis the acetylinic C—C triple bond) close contacts [2.794 (1) Å], resulting in a rolling sheet structure parallel to theacplane and aromatic π–π stacking interactions between the sheets [centroid–centroid distance = 3.593 (2) Å] generate a three-dimensional network.


Author(s):  
Dmitriy F. Mertsalov ◽  
Nataliya S. Surina ◽  
Elena A. Sorokina ◽  
Sevim Türktekin Çelikesir ◽  
Mehmet Akkurt ◽  
...  

The molecule of the title compound, C15H15Br2NO3, comprises a fused tricyclic system consisting of two five-membered rings (cyclopentane and tetrahydrofuran) and one six-membered ring (tetrahydropyridinone). Both five-membered rings of the tricyclic system have envelope conformations, and the conformation of the six-membered cycle is intermediate between chair and half-chair. In the crystal, the molecules are linked by C—H...O hydrogen bonds and C—H...π, C—Br...π and C...O interactions into double layers. The layers are connected into a three-dimensional network by van der Waals interactions.


Author(s):  
Rawia Imane Bahoussi ◽  
Ahmed Djafri ◽  
Abdelkader Chouaih ◽  
Ayada Djafri ◽  
Fodil Hamzaoui

In the title compound, C18H20N4O3S, the 1,2,4-triazole ring is twisted with respect to the mean plane of quinoline moiety at 65.24 (4)°. In the crystal, molecules are linked by weak C—H...O and C—H...N hydrogen bonds, forming the three-dimensional supramolecular packing. π–π stacking between the quinoline ring systems of neighbouring molecules is also observed, the centroid-to-centroid distance being 3.6169 (6) Å. Hirshfeld surface (HS) analyses were performed.


2018 ◽  
Vol 74 (12) ◽  
pp. 1815-1820
Author(s):  
Nadeem Abad ◽  
Youssef Ramli ◽  
Tuncer Hökelek ◽  
Nada Kheira Sebbar ◽  
Joel T. Mague ◽  
...  

The title compound, C16H19N5O, is built up from a planar quinoxalinone ring system linked through a methylene bridge to a 1,2,3-triazole ring, which in turn carries ann-butyl substituent. The triazole ring is inclined by 67.09 (4)° to the quinoxalinone ring plane. In the crystal, the molecules form oblique stacks along thea-axis direction through intermolecular C—HTrz...NTrz(Trz = triazole) hydrogen bonds, and offset π-stacking interactions between quinoxalinone rings [centroid–centroid distance = 3.9107 (9) Å] and π–π interactions, which are associated pairwise by inversion-related C—HDhydqn...π(ring) (Dhydqn = dihydroquinoxaline) interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (52.7%), H...N/N...H (18.9%) and H...C/C...H (17.0%) interactions.


Sign in / Sign up

Export Citation Format

Share Document