scholarly journals Crystal structure, Hirshfeld surface analysis and HOMO–LUMO analysis of (E)-4-bromo-N′-(4-methoxybenzylidene)benzohydrazide

2018 ◽  
Vol 74 (10) ◽  
pp. 1500-1503 ◽  
Author(s):  
Kasthuri Balasubramani ◽  
Ganesan Premkumar ◽  
Palaniyappan Sivajeyanthi ◽  
Muthaiah Jeevaraj ◽  
Bellarmin Edison ◽  
...  

The title Schiff base compound, C15H13BrN2O2, displays an E configuration with respect to the C=N double bond, which forms a dihedral angle of 58.06 (9)° with the benzene ring. In the crystal, the molecules are linked into chains parallel to the b axis by N—H...O and C—H...O hydrogen bonds, giving rise to rings with an R 2 1(6) graph-set motif. The chains are further linked into a three-dimensional network by C—H...π interactions. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from C...H (33.2%), H...H (27.7%), Br...H/H...Br (14.2%) and O...H/H...O (13.6%) interactions. The title compound has also been characterized by frontier molecular orbital analysis.

Author(s):  
Palaniyappan Sivajeyanthi ◽  
Bellarmin Edison ◽  
Kasthuri Balasubramani ◽  
Ganesan Premkumar ◽  
Toka Swu

The molecule of the title Schiff base compound, C14H13N3O3·H2O, displays a trans configuration with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 29.63 (7)°. The crystal structure features intermolecular N—H...O, C—H...O, O—H...O and O—H...N hydrogen-bonding interactions, leading to the formation of a supramolecular framework. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (37.0%), O...H/H...O (23.7%)), C...H/H...C (17.6%) and N...H/H...N (11.9%) interactions. The title compound has also been characterized by frontier molecular orbital analysis.


Author(s):  
Farid N. Naghiyev ◽  
Maria M. Grishina ◽  
Victor N. Khrustalev ◽  
Ali N. Khalilov ◽  
Mehmet Akkurt ◽  
...  

In the title compound, C28H21N3O, the 1,2-dihydropyridine ring of the 1,2,7,8-tetrahydroisoquinoline ring system is planar as expected, while the cyclohexa-1,3-diene ring has a twist-boat conformation, with Cremer–Pople parameters Q T = 0.367 (2) A, θ = 117.3 (3)° and φ = 327.3 (4)°. The dihedral angles between the best planes through the isoquinoline ring system and the three phenyl rings are 81.69 (12), 82.45 (11) and 47.36 (10)°. In the crystal, molecules are linked via N—H...O and C—H...N hydrogen bonds, forming a three-dimensional network. Furthermore, the crystal packing is dominated by C—H...π bonds with a strong interaction involving the phenyl H atoms. The role of the intermolecular interactions in the crystal packing was clarified using Hirshfeld surface analysis, and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (46.0%), C...H/H...C (35.1%) and N...H/H...N (10.5%) contacts.


Author(s):  
Dmitriy F. Mertsalov ◽  
Maryana A. Nadirova ◽  
Elena A. Sorokina ◽  
Marina A. Vinokurova ◽  
Sevim Türktekin Çelikesir ◽  
...  

The title compound, C24H24N2O5S, crystallizes with two independent molecules (A and B) in the asymmetric unit. In the central ring systems of both molecules, the tetrahydrofuran rings adopt envelope conformations, the pyrrolidine rings adopt a twisted-envelope conformation and the six-membered ring is in a boat conformation. In molecules A and B, the nine-membered groups attached to the central ring system are essentially planar (r.m.s. deviations of 0.002 and 0.003 Å, respectively). They form dihedral angles of 64.97 (9) and 56.06 (10)°, respectively, with the phenyl rings. In the crystal, strong intermolecular O—H...O hydrogen bonds and weak intermolecular C—H...O contacts link the molecules, forming a three-dimensional network. In addition weak π–π stacking interactions [centroid-to centroid distance = 3.7124 (13) Å] between the pyrrolidine rings of the nine-membered groups of A molecules are observed. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify the intermolecular interactions present in the crystal, indicating that the environments of the two molecules are very similar. The most important contributions for the crystal packing are from H...H (55.8% for molecule A and 53.5% for molecule B), O...H/H...O (24.5% for molecule A and 26.3% for molecule B) and C...H/H...C (12.6% for molecule A and 15.7% for molecule B) interactions.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Aytan A. Niyazova ◽  
...  

In the title compound, C16H12F5N3O, the dihedral angle between the aromatic rings is 31.84 (8)°. In the crystal, the molecules are linked into dimers possessing crystallographic twofold symmetry by pairwise N—H...O hydrogen bonds and weak C—H...O hydrogen bonds and aromatic π–π stacking interactions link the dimers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from F...H/H...F (41.1%), H...H (21.8%), C...H/H...C (9.7%) C...C (7.1%) and O...H/H...O (7.1%) contacts. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density.


Author(s):  
Angel D. Herrera-España ◽  
Jesús Aguilera-González ◽  
Gonzalo J. Mena-Rejón ◽  
Simón Hernández-Ortega ◽  
David Cáceres-Castillo

Two crystallographically independent molecules (A and B) are present in the asymmetric unit of the title compound, C11H9IN2OS, which differ mainly in the dihedral angle between the phenyl and thiazole rings [38.94 (16) and 32.12 (15)°, respectively]. In the crystal, the molecules form ...A...B...A...B... chains along the [001] and [010] directions through moderate N—H...O hydrogen bonds and C—H...π interactions, respectively. The overall three-dimensional network is formed by I...I and I...S interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...C/C...H (26.2%), H...H (20.9%), H...I/I...H (19.4%) and H...O/O...H (6.8%) interactions.


Author(s):  
Mohamed Samba ◽  
Mohamed Said Minnih ◽  
Tuncer Hökelek ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
...  

The title compound, C17H18N2O3, is constructed from a benzodiazepine ring system linked to a pendant dihydropyran ring, where the benzene and pendant dihydropyran rings are oriented at a dihedral angle of 15.14 (4)°. Intramolecular N—HDiazp...ODhydpand C—HDiazp...ODhydp(Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds link the seven-membered diazepine ring to the pendant dihydropyran ring, enclosingS(6) ring motifs. In the crystal, N—HDiazp...ODhydphydrogen bonds link the molecules into infinite chains along [10\overline{1}]. These chains are further linkedviaC—HBnz...ODhydp, C—HDhydp...ODhydpand C—HMth...ODhydp(Bnz = benzene and Mth = methyl) hydrogen bonds, forming a three-dimensional network. The observed weak C—HDiazp... π interaction may further stabilize the structure. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.1%), H...C/C...H (25.3%) and H...O/O...H (20.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing.


Author(s):  
Namiq Q. Shikhaliyev ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Nigar E. Ahmadova ◽  
Rizvan K. Askerov ◽  
...  

In the molecule of the title compound, C22H14Cl4N4, the central benzene ring makes dihedral angles of 77.03 (9) and 81.42 (9)° with the two approximately planar 2,2-dichloro-1-[(E)-phenyldiazenyl]vinyl groups. In the crystal, molecules are linked by C—H...π, C—Cl...π, Cl...Cl and Cl...H interactions, forming a three-dimensional network. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (30.4%), C...H/H...C (20.4%), Cl...H/H...Cl (19.4%), Cl...Cl (7.8%) and Cl...C/C...Cl (7.3%) interactions.


2019 ◽  
Vol 75 (11) ◽  
pp. 1734-1737 ◽  
Author(s):  
Said Daoui ◽  
Cemile Baydere ◽  
Fouad El Kalai ◽  
Rafik Saddik ◽  
Necmi Dege ◽  
...  

In the title compound, C13H14N2O3, the dihydropyridazine ring (r.m.s. deviation = 0.166 Å) has a screw-boat conformation. The dihedral angle between its mean plane and the benzene ring is 0.77 (12)°. In the crystal, intermolecular O—H...O hydrogen bonds generate C(5) chains and N—H...O hydrogen bonds produce R 2 2(8) motifs. These types of interactions lead to the formation of layers parallel to (12\overline{1}). The three-dimensional network is achieved by C—H...O interactions, including R 2 4(8) motifs. Intermolecular interactions were additionally investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots. The most significant contributions to the crystal packing are by H...H (43.3%), H...C/C...H (19.3%), H...O/H...O (22.6%), C...N/N...C (3.0%) and H...N/N...H (5.8%) contacts. C—H...π interactions and aromatic π–π stacking interactions are not observed.


2018 ◽  
Vol 74 (12) ◽  
pp. 1887-1890 ◽  
Author(s):  
Sevgi Kansiz ◽  
Mustafa Macit ◽  
Necmi Dege ◽  
Vadim A. Pavlenko

The title Schiff base compound, C22H28ClNO, shows mirror symmetry with all its non-H atoms, except thetert-butyl groups, located on the mirror plane. There is an intramolecular O—H...N hydrogen bond present forming anS(6) ring motif. In the crystal, the molecules are connected by C—H...π interactions, generating a three-dimensional supramolecular structure. Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H...H (68.9%) and C...H/H...C (11.7%) interactions.


2020 ◽  
Vol 76 (8) ◽  
pp. 1195-1200
Author(s):  
Md. Serajul Haque Faizi ◽  
Emine Berrin Cinar ◽  
Alev Sema Aydin ◽  
Erbil Agar ◽  
Necmi Dege ◽  
...  

The title compound, C15H12N2O, was synthesized by condensation reaction of 2-hydroxy-5-methylbenzaldehyde and 2-aminobenzonitrile, and crystallizes in the orthorhombic space group Pbca. The phenol ring is inclined to the benzonitrile ring by 25.65 (3)°. The configuration about the C=N bond is E, stabilized by a strong intramolecular O—H...N hydrogen bond that forms an S(6) ring motif. In the crystal, C—H...O and C—H...N interactions lead to the formation of sheets perpendicular to the a axis. C—H...π interactions, forming polymeric chains along the a-axis direction, connect these sheets into a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions for the packing arrangement are from H...H and C...H/H...C interactions. The density functional theory (DFT) optimized structure at the B3LYP/6–311 G(d,p) level is compared with the experimentally determined molecular structure and the HOMO–LUMO energy gap is given.


Sign in / Sign up

Export Citation Format

Share Document