molecular orbital analysis
Recently Published Documents


TOTAL DOCUMENTS

208
(FIVE YEARS 27)

H-INDEX

29
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Noureen Kanwal ◽  
Riaz Hussain ◽  
Abdul Satar ◽  
Mohammed A. Assiri ◽  
Muhammad Imran ◽  
...  

Abstract AbstractFive new asymmetric NFA-based polymer solar cells i.e., N1-N5 are designed by doing modification in terminal groups of the acceptor part of experimentally synthesized reference molecule with (4,4,9,9-tetramethyl-4,9 dihydroselenopheno [2’,3’:5,6]-s-indaceno [1,2-b] thiophene) core. Frontier molecular orbital analysis is used to study their photovoltaic and optoelectronic properties. It confirmed the electrons' transportation from the donor to the acceptor part. It stated that all molecules have a lower bandgap than R and N2 has the lowest bandgap of 2.01 eV. The molecular orbital potential analysis confirmed the electron-withdrawing properties of the terminal groups. Optical properties studies evaluated maximum absorption with transition energies. All newly designed molecules N1-N5 show higher λmax values than R i.e., in the range of 680-740 nm with N2 having the highest λmax of 735 nm and lowest transition energy of 1.69 eV. Dipole moment studies showed that N3 has a maximum dipole moment of 7-40 D with all others having comparable values. TDM plots confirmed the electron shifting from donor to acceptor region. Reorganization energy analysis showed that N1 and N3 have the lowest reorganization energy values thus giving the highest electron mobilities. Voc calculated results of all molecules N1-N5 have lower values than R when coupled with PTB7-Th donor polymer. Charge transport analysis of N2 and PTB7-Th coupled molecule confirmed the acceptor type nature of our designed molecules.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 27
Author(s):  
Christophe Gourlaouen ◽  
Jean-Philip Piquemal

We study the quantum chemical nature of the Lead(II) valence basins, sometimes called the lead “lone pair”. Using various chemical interpretation tools, such as molecular orbital analysis, natural bond orbitals (NBO), natural population analysis (NPA) and electron localization function (ELF) topological analysis, we study a variety of Lead(II) complexes. A careful analysis of the results shows that the optimal structures of the lead complexes are only governed by the 6s and 6p subshells, whereas no involvement of the 5d orbitals is found. Similarly, we do not find any significant contribution of the 6d. Therefore, the Pb(II) complexation with its ligand can be explained through the interaction of the 6s2 electrons and the accepting 6p orbitals. We detail the potential structural and dynamical consequences of such electronic structure organization of the Pb (II) valence domain.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7479
Author(s):  
Abdelkarim Litim ◽  
Youghourta Belhocine ◽  
Tahar Benlecheb ◽  
Monira Galal Ghoniem ◽  
Zoubir Kabouche ◽  
...  

The host–guest interactions of cucurbit[7]uril (CB[7]) as host and amphetamine (AMP), methamphetamine (MET) and their enantiomeric forms (S-form and R-form) as guests were computationally investigated using density functional theory calculations with the recent D4 atomic-charge dependent dispersion corrections. The analysis of energetic, structural and electronic properties with the aid of frontier molecular orbital analysis, charge decomposition analysis (CDA), extended charge decomposition analysis (ECDA) and independent gradient model (IGM) approach allowed to characterize the host–guest interactions in the studied systems. Energetic results indicate the formation of stable non-covalent complexes where R-AMP@CB[7] and S-AMP@CB[7] are more stable thermodynamically than R-MET@CB[7] and S-MET@CB[7] in gas phase while the reverse is true in water solvent. Based on structural analysis, a recognition mechanism is proposed, which suggests that the synergistic effect of van der Waals forces, ion–dipole interactions, intermolecular charge transfer interactions and intermolecular hydrogen bonding is responsible for the stabilization of the complexes. The geometries of the complexes obtained theoretically are in good agreement with the X-ray experimental structures and indicate that the phenyl ring of amphetamine and methamphetamine is deeply buried into the cavity of CB[7] through hydrophobic interactions while the ammonium group remains outside the cavity to establish hydrogen bonds with the portal oxygen atoms of CB[7].


2021 ◽  
Vol 77 (11) ◽  
pp. 1170-1174
Author(s):  
N. Suresh Babu ◽  
V. Sughanya ◽  
D. Praveenkumar ◽  
M. L. Sundararajan

In the fused ring system of the title compound, C24H27BrO5, the mean plane and maximum deviations of the central pyran ring are 0.0384 (2) and 0.0733 (2) Å, respectively. The cyclohexenone rings both adopt envelope conformations with the tetra-substituted C atoms as flap atoms, whereas the central pyran ring adopts a flattened boat conformation. The central pyran and phenyl substituent rings are almost perpendicular to each other, making a dihedral angle of 89.71 (2)°. In the crystal, pairs of molecules are linked via O—H...O hydrogen bonds, forming inversion dimers with an R 2 2(20) ring motif. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (50.6%), O...H/H...O (22.9%) and C...H/H...C (11.1%) contacts. Quantum chemical calculations for the frontier molecular orbitals were undertaken to determine the chemical reactivity of the title compound.


2021 ◽  
Author(s):  
Zaid Al-Sawaff ◽  
Fatma Kandemirli ◽  
Serap Senturk Dalgic

Abstract The aim of this study is to investigate the potential and capability of Si-CNT to detect and adsorb BMSF-BENZ ((4-bromo-7-methoxy-1-(2-methoxyethyl)-5-{[3-(methylsulfonyl)phenyl]methyl}-2-[4-(propane-2-))yl) phenyl]-1H-1,3-benzothiazole) molecular. For this purpose, we considered different configurations for adsorbing BMSF-BENZ drug on the surface of the Si-CNT nanocluster. All considered configurations are optimized using DFT theory at the 6-31G** basis set and B3LYP level of theory, and then from optimized structures, for each nanoparticle, we selected four stable models for the adsorption of BMSF-BENZ from (Br, N8, N9, N58, O35, O41 and S) active sites on the surface the selected nanoparticle. and Quantum theory of atoms in Molecular Analysis (QTAIM), and Molecular Orbital Analysis (MO) was also established. The calculated results indicate that the distance between nanocluster and drug from the N8 site is lower than from all other locations sites for all investigated nanoparticles, and adsorption of BMSF-BENZ from the N8 site is more favorable especially for the Si-CNT nanotube. The adsorption energy, hardness, softness, and fermi energy results reveal that the interaction of BMSF-BENZ with Si-CNT, is an encouraging adsorbent for this drug as Eads of BMSF-BENZ/Si-CNT complexes are (-5.15, -24.21, -8.22, -17.03, -13.16, -2.22, -12.70) kcal/mol in the gas phase. As well, the appropriate and spontaneous interaction between the BMSF-BENZ drug and Si-CNT nanoparticle was confirmed by investigating the quantum chemical molecular descriptors and solvation Gibbs free energies of all atoms. Si-CNT can be used as an amperometric sensor to detect the BMSF-BENZ drug molecule. Thus, we propose that the Si-CNT can be a promising candidate as a drug delivery vehicle for BMSF-BENZ drug molecules.


2021 ◽  
Vol 3 (7) ◽  
Author(s):  
Hitler Louis ◽  
Obieze C. Enudi ◽  
Joseph O. Odey ◽  
Izubundu B. Onyebuenyi ◽  
Azuaga T. Igbalagh ◽  
...  

AbstractIn this study, (E)-5-((4,6-dichloro-1,3,5-triazin-2-yl)amino)-4-hydroxy-3-(phenyldiazenyl)naphthalene-2,7-diylbis(hydrogen sulfite), a cyanurated H-acid (CHA) azo dye, was synthesized and characterized using FT-IR spectrophotometer and GC-MS spectroscopy. A density functional theory (DFT) based B3LYP and CAM-B3LYP method with 6–311 + G (d,p) basis set analysis was computed for HOMO-LUMO, natural bonding orbitals (NBO), UV-Vis absorptions and excitation interactions, in order to understand its molecular orbital excitation properties. A low Energy gap (Eg) of 2.947 eV was obtained from the molecular orbital analysis, which showed that HOMO to LUMO transition is highly feasible; hence CHA is adequate for diverse electronic and optic applications. Studies of the first five excitations (S0 → S1/S2/S3/S4/S5) of CHA revealed that S0 → S1 and S0 → S3 are π → π* type local excitations distributed around the –N=N– group; S0 → S2, a Rydberg type local excitation; S0 → S4, a highly localized π → π* excitation; while S0 → S5 is an n → π* charge transfer from a benzene ring to –N=N– group. From NBO analysis, we obtained the various donor–acceptor orbital interactions contributing to the stabilization of the studied compound. Most significantly, some strong hyper-conjugations (n → n*) within fragments, and non-bondingand anti-bonding intermolecular (n → n*/π* and π → n*/π*) interactions were observed to contribute appreciable energies. This study is valuable for understanding the molecular properties of the azo dyes compounds and for synthesizing new ones in the future.


2021 ◽  
Vol 12 (1) ◽  
pp. 1006-1021

The m-Cresol purple molecule is analyzed using spectroscopy and quantum computational chemistry methods using the software program Gaussian 09. B3LYP 6-311G (d, p) level has been used to create stable conformation of molecular structure, vibrational frequencies, Mulliken atomic charges, and electronic absorption spectra. The active regions of the infrared intensities, polarizabilities, and first-order polarizabilities were determined. The visible ultrasonic absorption with DOS spectrum demonstrated the highest correlation both before and after UV exposure. Furthermore, ’Frontier’s molecular orbital analysis was determined, explaining the difference between HOMOs and LUMOs energies. Swiss ADME is used to measure physicochemical descriptors and the prediction of molecular dynamics, ADME (absorption, distribution, metabolism, excretion) coefficients, pharmaco-kinetics pH, log P, biological activity, and drug-like nature. Furthermore, the predictive model of BOILED-Egg, QSAR analysis, molecular lipophilicity, distribution of microorganisms, target binding percentages, and topology measurements are analyzed to help drug discovery.


2021 ◽  
Author(s):  
Ulrich Fekl

Despite tremendous efforts by instructors and textbook authors, students find it difficult to develop useful chemical intuitions about preferred structures, structural trends, and properties of even the most common d-block element organometallic species, that is d6, d8, and d10 systems. A full molecular orbital analysis of a transition metal species is not always feasible or desirable, and crystal field theory, while generally useful, is often too simplistic and limited. It would be helpful to give students of organometallic chemistry an additional toolkit that helps them to understand d-block compounds, in particular highly covalent ones. It is well known in the research literature in organometallic chemistry that hybridization arguments involving s and d orbitals (such as sd and sd2 hybridization for d8 and d6 systems, respectively) provides useful insight. However, this knowledge is much underused in undergraduate teaching and not taught in undergraduate textbooks. The purpose of this article is to make descriptions of bonding that are based on s,d-hybridized orbitals more accessible in a way that is directly useful for undergraduate teaching. Geometries of unusual low-coordinate structures can be successfully predicted. An in-depth physical explanation for the trans-influence, the weakening of a bond due to a strong bond trans to it, is provided. A clear explanation is given for why the cis isomer normally more stable than the trans isomer in square-planar d8 complexes of the type MR2L2 (R = alkyl/aryl, L = relatively weakly bonded neutral ligand). Similarly, the relative stability of fac versus mer isomers in octahedral d6 complexes of the type MR3L3 is explained. Relevant to catalysis, the method explains why strongly donating ligands do not always facilitate oxidative addition and why 12-electron and 14-electron Pd(0) species are thermodynamically much more accessible than one might expect. The method capitalizes on 1st year knowledge such as the ability to write Lewis structures and to use hybridization arguments. It also ties into the upper-year experience, including graduate school, where covalent d-block complexes may be encountered in research and where the hybridization schemes described here naturally emerge from using the NBO formalism. It is discussed where the method might fit into the inorganic curriculum.<br>


2021 ◽  
Author(s):  
Ulrich Fekl

Despite tremendous efforts by instructors and textbook authors, students find it difficult to develop useful chemical intuitions about preferred structures, structural trends, and properties of even the most common d-block element organometallic species, that is d6, d8, and d10 systems. A full molecular orbital analysis of a transition metal species is not always feasible or desirable, and crystal field theory, while generally useful, is often too simplistic and limited. It would be helpful to give students of organometallic chemistry an additional toolkit that helps them to understand d-block compounds, in particular highly covalent ones. It is well known in the research literature in organometallic chemistry that hybridization arguments involving s and d orbitals (such as sd and sd2 hybridization for d8 and d6 systems, respectively) provides useful insight. However, this knowledge is much underused in undergraduate teaching and not taught in undergraduate textbooks. The purpose of this article is to make descriptions of bonding that are based on s,d-hybridized orbitals more accessible in a way that is directly useful for undergraduate teaching. Geometries of unusual low-coordinate structures can be successfully predicted. An in-depth physical explanation for the trans-influence, the weakening of a bond due to a strong bond trans to it, is provided. A clear explanation is given for why the cis isomer normally more stable than the trans isomer in square-planar d8 complexes of the type MR2L2 (R = alkyl/aryl, L = relatively weakly bonded neutral ligand). Similarly, the relative stability of fac versus mer isomers in octahedral d6 complexes of the type MR3L3 is explained. Relevant to catalysis, the method explains why strongly donating ligands do not always facilitate oxidative addition and why 12-electron and 14-electron Pd(0) species are thermodynamically much more accessible than one might expect. The method capitalizes on 1st year knowledge such as the ability to write Lewis structures and to use hybridization arguments. It also ties into the upper-year experience, including graduate school, where covalent d-block complexes may be encountered in research and where the hybridization schemes described here naturally emerge from using the NBO formalism. It is discussed where the method might fit into the inorganic curriculum.<br>


2021 ◽  
Vol 33 (8) ◽  
pp. 1891-1904
Author(s):  
K. Ayisha Begam ◽  
N. Kanagathara ◽  
V. Ragavendran ◽  
R. Gowri Shankar Rao ◽  
M.K. Marchewka

A novel nitrogen rich energetic salt 2,4-diamino-6-methyl-1,3,5-triazinium levulinate dihydrate (DMTLDH) has been grown by slow evaporation method at room temperature. The grown synthesized salt crystallizes in the centrosymmetric space group P21/n of monoclinic system. The intermolecular hydrogen bond N–H···N, N–H···O, C–H···O, O–H···O type interactions stabilizes the structure and leads to three dimensional network. In addition to that the crystal structure also possesses C–O···Cg interactions. Also, quantum chemical computational studies using DFT-B3LYP/6-311++G(d,p) and PBEPBE/6-31G(d,p) basis set is used to analyze the structural parameters and vibrational frequencies of grown crystal. Frontier molecular orbital analysis describes the charge transfer within the molecule and also other electronics parameters were calculated. The natural bonding orbital analysis has also been performed to study the stability of the molecule. Further, the crystal packing behaviour of DMTLDH was studied quantitatively with the aid of Hirshfeld surface analysis.


Sign in / Sign up

Export Citation Format

Share Document