base compound
Recently Published Documents


TOTAL DOCUMENTS

133
(FIVE YEARS 31)

H-INDEX

18
(FIVE YEARS 4)

Author(s):  
Sevgi Kansiz ◽  
Semanur Yesilbag ◽  
Necmi Dege ◽  
Eiad Saif ◽  
Erbil Agar

The Schiff base compound, C24H24N2O4, was synthesized by the interaction of 2-hydroxy-3-methoxy benzaldehyde and 1,4-benzene dimethanamine in ethanol, and crystallizes in the monoclinic space group P21/n with Z′ = 0.5. The molecule is not planar, the 1,4-diethylbenzene and the phenol rings are twisted with respect to each other, making a dihedral angle of 74.27 (5)°. The molecular structure is stabilized by an O—H...N hydrogen bond, forming an S(6) ring motif. In the crystal, molecules are linked by C—H...O hydrogen bonds, resulting in the formation of sheets parallel to the bc plane. A Hirshfeld surface analysis was undertaken to investigate the various intermolecular contacts controlling the supramolecular topology, suggesting the H...O (18%) contacts to be the most significant interactions, whereas the H...H (50.5%) and C...H (24.3%) interactions are less significant.


2021 ◽  
Vol 12 (4) ◽  
pp. 454-458
Author(s):  
Sehriman Atalay ◽  
Mustafa Macit ◽  
Hakan Bulbul

The Schiff base compound, N-((2-ethoxynaphthalen-1-yl)methylene)-4-fluoroaniline, has been synthesized and characterized by X-ray diffraction method. The title compound, C19H16FNO, crystallizes in triclinic, space group P-1 (no. 2), a = 10.6343(9) Å, b = 11.4720(10) Å, c = 13.8297(13) Å, α = 102.466(7)°, β = 104.763(7)°, γ = 98.972(7)°, V = 1552.7(2) Å3, Z = 4, T = 293(2) K, μ(MoKα) = 0.086 mm-1, Dcalc = 1.255 g/cm3, 24355 reflections measured (3.16° ≤ 2Θ ≤ 51°), 5779 unique (Rint = 0.0794, Rsigma = 0.0696) which were used in all calculations. The final R1 was 0.0373 (I > 2σ(I)) and wR2 was 0.0763 (all data). The title compound contains two molecules with a similar structure in the asymmetric unit cell. The packing of the crystal structure is determined by weak C–H···F and C-H···N intermolecular hydrogen bonds. The contributions of these weak interactions in the crystal structure were calculated by the Hirshfeld surfaces and examined by the intermolecular interactions within the structure. The existence, nature and percentage contribution of different intermolecular interactions H···H, C···H, N···H, and F···H were determined using Hirshfeld surface analysis and fingerprint plots.


2021 ◽  
Vol 9 (2) ◽  
pp. 051-057
Author(s):  
Shahad Muhammad ◽  
Ahmed Ahmed

New heterocyclic compounds contain triazole ring (play very important role in photostabilization as UV absorber) synthesized by reaction between the di Schiff base (compound 3) with aromatic alkyl halide (Benzyl bromide) and shows there activity as photostabilizer for polystyrene through exposure to the UV-Light (300 hours). Finally Infrared spectroscopy, 1H-NMR, 13C-NMR and instrumental methods were used to characterize products and their structures.


2021 ◽  
Vol 8 (2) ◽  
pp. 1-3
Author(s):  
Liang Yu ◽  
Huang Xiaojuan ◽  
Yang Mei ◽  
Zhang Jun

IUCrData ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Erika Samoľová ◽  
Aliakbar Dehno Khalaji ◽  
Václav Eigner

The new title Schiff base compound, C11H15BrN2O2, crystallizes in the monoclinic space group P21 with two independent molecules in the asymmetric unit. It was prepared by the condensation reaction of 5-bromo-2-hydroxybenzaldehyde and aminoethylethanolamine. There is an intramolecular O—H...N hydrogen bond with an S(6) ring motif. Moreover, there are intermolecular C—H...N, C—H...O and Br...O interactions in the crystal structure of the title compound.


2021 ◽  
Vol 1227 ◽  
pp. 129700
Author(s):  
N. Mete Kaleli ◽  
Fatma Eroğlu ◽  
Mesutcan Şahin ◽  
Melike Kalkan ◽  
Kaan C. Emregül

2021 ◽  
Vol 21 (2) ◽  
pp. 71-77
Author(s):  
Yu. G. Fedorenko ◽  
◽  
Yu. A. Olkhovyk ◽  
A. N. Rozko ◽  
G. P. Pavlyshyn ◽  
...  

The paper presents an analysis of the experimental results of the use of geopolymer binders for cementing boron-containing liquid radioactive waste (LRW). The dependence of the properties of compounds on the component composition of binders has been studied. The following components are considered: liquid glass with a silicon modulus of 2.9, a mixture of ash of Darnytsya TPP with slag of the Mariupol metallurgical plant in a ratio of 1: 1 and potassium hydroxide. To perform a factor analysis of the effect, the mass of these substances was taken as three factors in the analysis at two levels. For the manufacture of compounds imitation LRW was mixed with zeolite in a ratio of 10:1 at a temperature of about 60 оC. Subsequently, the above components were added to the mixture, the weight of which varied by ±17% relative to the weight of the base compound. To study the properties, samples of different sizes 5×5×5 cm, 1.5×1.5×1.5 cm and rectangular samples with an outer surface from 96 cm2 to 104 cm2 were made. Each property was studied in 8 samples. The obtained results allowed to construct linear equations that quantitatively link the corresponding characteristic of the compound with the composition of the binders. The correlation coefficients between the experimental and the data calculated by the equation are estimated. The average values of the correlation coefficients may indicate that not all factors were taken into account. The obtained regularities show that in the conditions of the experiment slag and ash increase, and liquid glass and potassium hydroxide reduce the rate of setting of the samples. The density of the samples is increased by ash and slag, while liquid glass and potassium hydroxide are reduced. The compressive strength of liquid glass and potassium hydroxide is reduced, while the mixture of ash and slag is increased. The leaching rate Сs of liquid glass and potassium hydroxide is increased, the mixture of ash and slag is reduced. At the same time, the leaching rate of Sr increases the ash/slag mixture, while liquid glass and potassium hydroxide decrease. The time during which the leaching of Cs reaches the normative values, slag and ash are reduced, and liquid glass and potassium hydroxide are lengthened. The obtained results can be taken into account when optimizing the composition of geopolymer binders for cementing LRW.


Sign in / Sign up

Export Citation Format

Share Document