central ring
Recently Published Documents


TOTAL DOCUMENTS

177
(FIVE YEARS 36)

H-INDEX

19
(FIVE YEARS 2)

2021 ◽  
Vol 9 ◽  
Author(s):  
Qiuhua Zhu

Racemic C6-unsubstituted tetrahydropyrimidines (THPs) are the products of an efficient five-component reaction that we developed. THPs show strong AIE characteristics, that is, completely no fluorescence in different solvents but strong emission with fluorescence quantum yields (ΦF) up to 100% upon aggregation. However, the ΦF values of their pure enantiomers are lower than 46%. Unlike common AIE compounds with crowded aryl rotors on a π-bond or on an aryl ring, THPs have three completely non-crowded aryl rotors on a non-aromatic chiral central ring (tetrahydropyrimidine). In this mini review, we first discuss the AIE characteristics of THPs and the influences of molecular structures on their molecular packing modes and optical properties, and then present their applications and forecast the development of other racemic AIE compounds.


Author(s):  
Igor O. Fritsky ◽  
Valerii Y. Sirenko ◽  
Sergiu Shova ◽  
Olesia I. Kucheriv ◽  
Il'ya A. Gural'skiy

9-Aminoacridinium chloride N,N-dimethylformamide monosolvate, C13H11N2 +Cl−·C3H7NO, crystallizes in the monoclinic space group P21/c. The salt was crystallized from N,N-dimethylformamide. The asymmetric unit consists of two C13H11N2 +Cl− formula units. The 9-aminoacridinium (9-AA) molecules are protonated with the proton on the N atom of the central ring. This N atom is connected to an N,N-dimethylformamide molecule by a hydrogen bond. The H atoms of the amino groups create short contacts with two chloride ions. The 9-AA cations in adjacent layers are oriented in an antiparallel manner. The molecules are linked via a network of multidirectional π–π interactions between the 9-AA rings, and the whole lattice is additionally stabilized by electrostatic interactions between ions.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elżbieta Krytkowska ◽  
Aleksandra Grabowicz ◽  
Katarzyna Mozolewska-Piotrowska ◽  
Zofia Ulańczyk ◽  
Krzysztof Safranow ◽  
...  

AbstractDisturbances in choroidal microcirculation may lead to the onset and progression of age-related macular degeneration (AMD). We aimed to assess changes in the choroidal volume and thickness in the macular region in AMD eyes and to investigate whether coexisting vascular risk factors alter choroidal status. We enrolled 354 AMD patients (175 dry, 179 wet AMD) and 121 healthy controls. All participants underwent a complete ophthalmologic examination and assessment of choroidal thickness and volume. A multivariate analysis adjusted for age, sex, and smoking status revealed that wet AMD was an independent factor associated with higher average thickness of the central ring area (ATC) and average volume of the central ring area (AVC) and lower choroidal vascularity index (CVI) compared to controls (β =  + 0.18, p = 0.0007, β =  + 0.18, p = 0.0008, respectively) and to dry AMD (β =  + 0.17, p = 0.00003 for both ATC and AVC and β =  − 0.30 p < 0.0001 for CVI). ATC, AVC and average volume (AV) were lower in AMD patients with hypertension and ischaemic heart disease (IHD). The duration of hypertension was inversely correlated with ATC, AVC and AV (Rs =  − 0.13, p < 0.05; Rs =  − 0.12; p < 0.05, Rs =  − 0.12; p < 0.05, respectively) while IHD duration negatively correlated with AV (Rs =  − 0.15, p < 0.05). No such associations were observed in the control group. Our findings show that the choroidal vascular system in eyes with AMD is much more susceptible to damage in the presence than in the absence of systemic vascular disease.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4786
Author(s):  
Eyglis Ledesma ◽  
Iván Zamora ◽  
Arantxa Uranga ◽  
Núria Barniol

This paper presents a multielement annular ring ultrasound transducer formed by individual high-frequency PMUTs (17.5 MHz in air and 8.7 MHz in liquid) intended for high-precision axial focalization and high-performance ultrasound imaging. The prototype has five independent multielement rings fabricated by a monolithic process over CMOS, allowing for a very compact and robust design. Crosstalk between rings is under 56 dB, which guarantees an efficient beam focusing on a range between 1.4 mm and 67 µm. The presented PMUT-on-CMOS annular array with an overall diameter down to 669 µm achieves an output pressure in liquid of 4.84 kPa/V/mm2 at 1.5 mm away from the array when the five channels are excited together, which is the largest reported for PMUTs. Pulse-echo experiments towards high-resolution imaging are demonstrated using the central ring as a receiver. With an equivalent diameter of 149 µm, this central ring provides high receiving sensitivity, 441.6 nV/Pa, higher than that of commercial hydrophones with equivalent size. A 1D ultrasound image using two channels is demonstrated, with maximum received signals of 7 mVpp when a nonintegrated amplifier is used, demonstrating the ultrasound imaging capabilities.


2021 ◽  
Author(s):  
Farzana Husain

The objective of this thesis is to design MEMS magnetic actuator for MEMS FTIRS. The actuator consists of moving part and fixed part. The moving part uses rotation-to-translation motion conversion mechanism to achieve large translation, which includes four trapezoidal plates, central ring, anchoring springs and connection springs. The fixed part of the actuator consists of four solenoids. The actuator can be integrated with separately fabricated micromirror plate to achieve high surface quality translation micromirror for FTIRS. The actuator is capable of eliminating titling by controlling the four solenoids individually. The MEMS magnetic actuator has been designed and simulated to be able to output a static displacement of 370micrometers. The stress has been analyzed for the moving part of the actuator. The actuator fixed part has been designed. Dynamic analysis has been conducted for the moving part of the actuator. The moving part of the actuator has been fabricated using MetalMUMPs.


2021 ◽  
Author(s):  
Nicolas Meitinger ◽  
Alexander Klaus Mengele ◽  
Djawed Nauroozi ◽  
Sven Rau

Hexaarylbenzenes (HABs) are valuable precursors for the bottom-up synthesis of (nano-)graphene structures. In this work the synthesis of several bis-pyrimidine substituted HABs furnished with tert-butyl groups at different sites of the four pendant phenyl rings is reported. The synthetic procedure is based on modular [4+2]-Diels-Alder cycloaddition reactions followed by decarbonylation. Analysis of the solid-state structures revealed that the newly synthesized HABs feature a propeller-like arrangement of the six arylic substituents around the benzene core. Here, the tilt of the aryl rings with respect to the central ring is strongly depending on the intermolecular interactions between the HABs as well as co-crystallized solvent molecules. Interestingly, by evading the closest proximity of the central ring using an alkyne spacer, the distant pyrimidine ring is oriented in coplanar geometry with regard to the benzene core, giving rise to a completely different UV-absorption profile.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1275
Author(s):  
Virginia Spanò ◽  
Marilia Barreca ◽  
Vincenzo Cilibrasi ◽  
Michele Genovese ◽  
Mario Renda ◽  
...  

Cystic fibrosis (CF) is a genetic disease caused by mutations that impair the function of the CFTR chloride channel. The most frequent mutation, F508del, causes misfolding and premature degradation of CFTR protein. This defect can be overcome with pharmacological agents named “correctors”. So far, at least three different classes of correctors have been identified based on the additive/synergistic effects that are obtained when compounds of different classes are combined together. The development of class 2 correctors has lagged behind that of compounds belonging to the other classes. It was shown that the efficacy of the prototypical class 2 corrector, the bithiazole corr-4a, could be improved by generating conformationally-locked bithiazoles. In the present study, we investigated the effect of tricyclic pyrrolothiazoles as analogues of constrained bithiazoles. Thirty-five compounds were tested using the functional assay based on the halide-sensitive yellow fluorescent protein (HS-YFP) that measured CFTR activity. One compound, having a six atom carbocyle central ring in the tricyclic pyrrolothiazole system and bearing a pivalamide group at the thiazole moiety and a 5-chloro-2-methoxyphenyl carboxamide at the pyrrole ring, significantly increased F508del-CFTR activity. This compound could lead to the synthesis of a novel class of CFTR correctors.


Author(s):  
Dmitriy F. Mertsalov ◽  
Maryana A. Nadirova ◽  
Elena A. Sorokina ◽  
Marina A. Vinokurova ◽  
Sevim Türktekin Çelikesir ◽  
...  

The title compound, C24H24N2O5S, crystallizes with two independent molecules (A and B) in the asymmetric unit. In the central ring systems of both molecules, the tetrahydrofuran rings adopt envelope conformations, the pyrrolidine rings adopt a twisted-envelope conformation and the six-membered ring is in a boat conformation. In molecules A and B, the nine-membered groups attached to the central ring system are essentially planar (r.m.s. deviations of 0.002 and 0.003 Å, respectively). They form dihedral angles of 64.97 (9) and 56.06 (10)°, respectively, with the phenyl rings. In the crystal, strong intermolecular O—H...O hydrogen bonds and weak intermolecular C—H...O contacts link the molecules, forming a three-dimensional network. In addition weak π–π stacking interactions [centroid-to centroid distance = 3.7124 (13) Å] between the pyrrolidine rings of the nine-membered groups of A molecules are observed. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify the intermolecular interactions present in the crystal, indicating that the environments of the two molecules are very similar. The most important contributions for the crystal packing are from H...H (55.8% for molecule A and 53.5% for molecule B), O...H/H...O (24.5% for molecule A and 26.3% for molecule B) and C...H/H...C (12.6% for molecule A and 15.7% for molecule B) interactions.


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 502
Author(s):  
Małgorzata Szymańska ◽  
Irena Majerz

The geometry of anthrone and anthraquinone—natural substances of plant origin—was investigated under the substitution of hydrogen atoms in side aromatic ring and, for anthrone, also in the central ring. A significant influence of substitution on geometry expressed by the angle between the side rings was shown. The geometry changes are connected with the changes of electron density and aromaticity of the anthrone and anthraquinone rings. The flexibility of the investigated compounds was confirmed by comparison of the optimized molecules and the molecules in the crystal state where the packing forces can influence the molecular geometry.


Sign in / Sign up

Export Citation Format

Share Document