frontier molecular orbital
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 144)

H-INDEX

26
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Noureen Kanwal ◽  
Riaz Hussain ◽  
Abdul Satar ◽  
Mohammed A. Assiri ◽  
Muhammad Imran ◽  
...  

Abstract AbstractFive new asymmetric NFA-based polymer solar cells i.e., N1-N5 are designed by doing modification in terminal groups of the acceptor part of experimentally synthesized reference molecule with (4,4,9,9-tetramethyl-4,9 dihydroselenopheno [2’,3’:5,6]-s-indaceno [1,2-b] thiophene) core. Frontier molecular orbital analysis is used to study their photovoltaic and optoelectronic properties. It confirmed the electrons' transportation from the donor to the acceptor part. It stated that all molecules have a lower bandgap than R and N2 has the lowest bandgap of 2.01 eV. The molecular orbital potential analysis confirmed the electron-withdrawing properties of the terminal groups. Optical properties studies evaluated maximum absorption with transition energies. All newly designed molecules N1-N5 show higher λmax values than R i.e., in the range of 680-740 nm with N2 having the highest λmax of 735 nm and lowest transition energy of 1.69 eV. Dipole moment studies showed that N3 has a maximum dipole moment of 7-40 D with all others having comparable values. TDM plots confirmed the electron shifting from donor to acceptor region. Reorganization energy analysis showed that N1 and N3 have the lowest reorganization energy values thus giving the highest electron mobilities. Voc calculated results of all molecules N1-N5 have lower values than R when coupled with PTB7-Th donor polymer. Charge transport analysis of N2 and PTB7-Th coupled molecule confirmed the acceptor type nature of our designed molecules.


2022 ◽  
Author(s):  
nambury surendra babu ◽  
Irene Octavian Riwa

Abstract The current study examined a series of 1,3,5-tris (diphenylamino) benzene derivatives used as hole transport materials in perovskite solar cells (HTM1-HTM9). DFT and TD/DFT with the B3LYP/6-311G basis set used for all calculations. The ground state geometry, frontier molecular orbital (FMO), photoelectric properties and reorganization energies and the absorption spectra were investigated. The energy levels of HOMO and LUMO orbitals were calculated for HTM1-HTM9, compared to all of the compounds under investigation and the spiro-OMeTAD, HTM 8 has the lowest HOMO energy level, indicating a favourable overlap with the MAPbI3 perovskite active layer.


2022 ◽  
pp. 1-9
Author(s):  
Nan Lu ◽  
Hui Liang ◽  
Chengxia Miao ◽  
Xiaozheng Lan ◽  
Ping Qian

The mechanism for DMAP-promoted [4 + 2]-annulation of prop-2-ynylsulfonium with isatoic anhydride is investigated using the M06-2X functional. The reaction comprises isomerization of prop-2-ynylsulfonium in stage 1. Stage 2 includes DMAP-promoted deprotonation, nucleophilic addition, ring opening, and decarboxylation. Three steps of intramolecular cycloaddition, DMAP-promoted protonation, and dealkylation occur in stage 3, generating methylated DMAP and neutral thioether, which undergo double-bond isomerization to yield 3-methylthio-4-quinolone. The ability of DMAP to promote the reaction lies in the barrier decrease for alkyne isomerization, deprotonation/protonation of allenes, and dealkylation as effective bases for transferring protons and methyl groups. The roles of prop-2-ynylsulfonium and isatoic anhydride were demonstrated to be C2 and C4 synthons via Multiwfn analysis on the frontier molecular orbital. An alternative path was also confirmed by the Mayer bond order of the vital transition states.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 360
Author(s):  
Iram Kanwal ◽  
Nasir Rasool ◽  
Syeda Huda Mehdi Zaidi ◽  
Zainul Amiruddin Zakaria ◽  
Muhammad Bilal ◽  
...  

In the present study, pyrazole-thiophene-based amide derivatives were synthesized by different methodologies. Here, 5-Bromothiophene carboxylic acid (2) was reacted with substituted, unsubstituted, and protected pyrazole to synthesize the amide. It was observed that unsubstituted amide (5-bromo-N-(5-methyl-1H-pyrazol-3-yl)thiophene-2-carboxamide (7) was obtained at a good yield of about 68 percent. The unsubstituted amide (7) was arylated through Pd (0)-catalyzed Suzuki–Miyaura cross-coupling, in the presence of tripotassium phosphate (K3PO4) as a base, and with 1,4-dioxane as a solvent. Moderate to good yields (66–81%) of newly synthesized derivatives were obtained. The geometry of the synthesized compounds (9a–9h) and other physical properties, like non-linear optical (NLO) properties, nuclear magnetic resonance (NMR), and other chemical reactivity descriptors, including the chemical hardness, electronic chemical potential, ionization potential, electron affinity, and electrophilicity index have also been calculated for the synthesized compounds. In this study, DFT calculations have been used to investigate the electronic structure of the synthesized compounds and to compute their NMR data. It was also observed that the computed NMR data manifested significant agreement with the experimental NMR results. Furthermore, compound (9f) exhibits a better non-linear optical response compared to all other compounds in the series. Based on frontier molecular orbital (FMO) analysis and the reactivity descriptors, compounds (9c) and (9h) were predicted to be the most chemically reactive, while (9d) was estimated to be the most stable among the examined series of compounds.


Author(s):  
Xue Li ◽  
Changsheng Shi ◽  
Yuhang Mo ◽  
Jiancheng Rao ◽  
Lei Zhao ◽  
...  

Frontier molecular orbital engineering has been demonstrated to achieve aggregation induced delayed fluorescence (AIDF) for non-doped OLEDs. As a proof of concept, a new model compound AT-spiro-DMACF is reported on...


2021 ◽  
Vol 12 (4) ◽  
pp. 401-411
Author(s):  
Sibel Celik ◽  
Senay Yurdakul

In this study, the spectroscopic characterization, frontier molecular orbital analysis, and natural bond orbital analysis (NBO) analysis were executed to determine the movement of electrons within the molecule and the stability, and charge delocalization of the 4H-1,2,4-triazol-4-amine (4-AHT) through density functional theory (DFT) approach and B3LYP/6-311++G(d,p) level of theory. Surface plots of the hybrids’ Molecular Electrostatic Potential (MEP) revealed probable electrophilic and nucleophilic attacking sites. The discussed ligand were observed to be characterized by various spectral studies (FT-IR, UV-Vis). The calculated IR was found to be correlated with experimental values. The UV-Vis data of the molecule was used to analyze the visible absorption maximum (λmax) using the time-dependent DFT method. Since the principle of drug-likeness is usually used in combinatorial chemistry to minimize depletion in pharmacological investigations and growth, drug-likeness and ADME properties were calculated in this research to establish 4-AHT molecule bioavailability. Furthermore, molecular docking studies were carried out. Molecular docking analysis was performed for the title ligand inside the active site of the Epidermal Growth Factor Receptor (EGFR). The title compound’s anti-tumor activity against the cancer cell, in which EGFR is strongly expressed, prompted us to conduct molecular docking into the ATP binding site of EGFR to predict whether this molecule has an analogous binding mode to the EGFR inhibitors (PDB: ID: 1M17).


2021 ◽  
Vol 12 (4) ◽  
pp. 459-468
Author(s):  
Shilpa Mallappa Somagond ◽  
Ahmedraza Mavazzan ◽  
Suresh Fakkirappa Madar ◽  
Madivalagouda Sannaikar ◽  
Shankar Madan Kumar ◽  
...  

This study is composed of X-ray diffraction and Density Functional Theory (DFT) based molecular structural analyses of 2-phenyl-4-(prop-2-yn-1-yl)-2,4-dihydro-3H-1,2,4-triazol-3-one (2PPT). Crystal data for C11H9N3O: Monoclinic, space group P21/c (no. 14), a = 7.8975(2) Å, b = 11.6546(4) Å, c = 11.0648(3) Å, β = 105.212(2)°, V = 982.74(5) Å3, Z = 4, T = 296.15 K, μ(MoKα) = 0.091 mm-1, Dcalc = 1.346 g/cm3, 13460 reflections measured (5.174° ≤ 2Θ ≤ 64.72°), 3477 unique (Rint = 0.0314, Rsigma = 0.0298) which were used in all calculations. The final R1 was 0.0470 (I > 2σ(I)) and wR2 was 0.1368 (all data). The experimentally determined data was supported by theoretically optimized calculations processed with the help of Hartree-Fock (HF) technique and Density Functional Theory with the 6-311G(d,p) basis set in the ground state. Geometrical parameters (Bond lengths and angles) as well as spectroscopic (FT-IR, 1H NMR, and 13C NMR) properties of 2PPT molecule has been optimized theoretically and compared with the experimentally obtained results. Hirshfeld surface analysis with 2D fingerprinting plots was used to figure out the possible and most significant intermolecular interactions. The electronic characterizations such as molecular electrostatic potential map (MEP) and Frontier molecular orbital (FMO) energies have been studied by DFT/B3LYP approach. The MEP imparted the detailed information regarding electronegative and electropositive regions across the molecule. The HOMO-LUMO energy gap as high as 5.3601 eV was found to be responsible for the high kinetic stability of the 2PPT.


Author(s):  
YAMIN WU ◽  
BIN LIAO ◽  
GUOLIANG WANG ◽  
BAOAN Bian

The effect of asymmetric lateral linking groups on the electronic transport is investigated in the biphenyl molecule-based device with gold electrodes with the framework of density functional theory and nonequilibrium Green’s function. The asymmetric lateral linking groups reduce the currents of molecular junctions, and result in the reverse rectifying behavior. The devices with asymmetric lateral linking groups –SH and –SCH3 have maximum rectifying ratios, while the asymmetric lateral linking group –SH and –NH2 cause minimum rectifying ratios. The calculated results suggest that the asymmetric lateral linking group induces the reduced coupling between molecule and right electrode, asymmetric distribution of frontier molecular orbital and asymmetric evolution of the molecular orbital eigenenergies, accounting for the rectifying behavior.


2021 ◽  
Vol 22 (24) ◽  
pp. 13498
Author(s):  
Yunjie Xiang ◽  
Jie Zhang ◽  
Shaohui Zheng

Experimental researchers have found that the organic solar cell (OSC) based on DRCN5T (an oligothiophene) possesses excellent power conversion efficiency (PCE) of 10.1%. However, to date, there have been few studies about halogenation of DRCN5T, and its effects on photovoltaic properties of halogenated DRCN5T are still not clear. In the present work, we first perform benchmark calculations and effectively reproduce experimental results. Then, eight halogenated DRCN5T molecules are designed and investigated theoretically by using density functional theory (DFT) and time-dependent DFT. The dipole moments, frontier molecular orbital energies, absorption spectra, exciton binding energy (Eb), singlet–triplet energy gap (ΔEST), and electrostatic potential (ESP) of these molecules, and the estimated open circuit voltages (VOCs) of the OSCs with PC71BM as acceptor are presented. We find that (1) generally, halogen substitutions would increase VOC; (2) Eb rises with more fluorine substitutions, but for Cl and Br substitutions, Eb increases firstly and then drops; (3) ΔEST keeps increasing with more halogen substitutions; (4) except for Br substitutions, the averaged ESP arises along with more halogen substitutions; (5) the absorption strength of UV–Vis spectra of DRCN5T2F, DRCN5T4F, DRCN5T6F, and DRCN5T2Cl in the visible region is enhanced with respect to DRCN5T. Based on these results, overall, DRCN5T2Cl, DRCN5T4F, and DRCN5T6F may be promising donors.


Author(s):  
Rabiu Nuhu Muhammad ◽  
N. M. Mahraz ◽  
A. S Gidado ◽  
A. Musa

Tetrathiafulvalene () is an organosulfur compound used in the production of molecular devices such as switches, sensors, nonlinear optical devices and rectifiers. In this work, a theoretical study on the effects of solvent on TTF molecule was investigated and reported based on Density Functional Theory (DFT) as implemented in Gaussian 03 package using B3LYP/6-31++G(d,p) basis set. Different solvents were introduced as a bridge to investigate their effects on the electronic structure. The HUMO, LUMO, energy gap, global chemical index, thermodynamic properties, NLO and DOS analysis of the TTF molecule in order to determine the reactivity and stability of the molecule were obtained. The results obtained showed that the solvents have effects on the electronic and non-linear-optical properties of the molecule. The optimized bond length revealed that the molecule has strong bond in gas phase with smallest bond length of about 1.0834Å than in the rest of the solvents. It was observed that the molecule is more stable in acetonitrile with HOMO-LUMO gap and chemical hardness of 3.6373eV and 1.8187eV respectively. This indicates that the energy gap and chemical hardness of TTF molecule increases with the increase in polarity and dielectric constant of the solvents. The computed results agreed with the results in the literature. The thermodynamics and NLO properties calculation also indicated that TTF molecule has highest value of specific heat capacity (Cv), total dipole moment () and first order hyperpolarizability () in acetonitrile, while acetone has the highest value of entropy and toluene has a slightly higher value of zero point vibrational energy (ZPVE) than the rest of the solvents. The results show that careful selection of the solvents and basis sets can tune the frontier molecular orbital energy gap of the molecule and can be used for molecular device applications.


Sign in / Sign up

Export Citation Format

Share Document