scholarly journals Crystal structure, Hirshfeld surface analysis and interaction energy calculation of 1-decyl-2,3-dihydro-1H-benzimidazol-2-one

Author(s):  
Younesse Ait Elmachkouri ◽  
Asmaa Saber ◽  
Ezaddine Irrou ◽  
Bushra Amer ◽  
Joel T. Mague ◽  
...  

The title molecule, C17H26N2O, adopts an L-shaped conformation, with the straight n-decyl chain positioned nearly perpendicular to the dihydrobenzimidazole moiety. The dihydrobenzimidazole portion is not quite planar as there is a dihedral angle of 1.20 (6)° between the constituent planes. In the crystal, N—H...O hydrogen bonds form inversion dimers, which are connected into the three-dimensional structure by C—H...O hydrogen bonds and C—H...π(ring) interactions. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H...H (75.9%), H...C/C...H (12.5%) and H...O/O...H (7.0%) interactions. Based on computational chemistry using the CE–B3LYP/6–31 G(d,p) energy model, C—H...O hydrogen bond energies are −74.9 (for N—H...O) and −42.7 (for C—H...O) kJ mol−1.

Author(s):  
Mir Abolfazl Naziri ◽  
Ertan Şahin ◽  
Tuncer Hökelek

The asymmetric unit of the title aroyl hydrazone Schiff base salt, C13H12N3O2+·N O3−, consists of one molecular cation in the keto tautomeric form, adopting anEconfiguration with respect to the azomethine bond, and one nitrate anion. The two units are linkedviaan N—H...O hydrogen bond. The molecule overall is non-planar, with the pyridinium and benzene rings being inclined to each other by 4.21 (4)°. In the crystal, cations and anions are linkedviaintermolecular O—H...O and bifurcated N—H...O hydrogen bonds, forming a two-dimensional network parallel to (101). These networks are further linked by C—H...O hydrogen bonds, forming slabs parallel to (101). The slabs are linked by offset π–π interactions, involving the benzene and pyridinium rings of adjacent slabs [intercentroid distance = 3.610 (2) Å], forming a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...O/O...H (45.1%), H...H (19.3%), H...C/C...H (14.5%), H...N/N...H (7.9%) and C...C (6.0%) interactions.


2019 ◽  
Vol 75 (11) ◽  
pp. 1729-1733
Author(s):  
Sevgi Kansiz ◽  
Seher Meral ◽  
Necmi Dege ◽  
Aysen Alaman Agar ◽  
Igor O. Fritsky

In the title complex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetradentate open-chain Schiff base ligand 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]. The crystal packing is stabilized by intramolecular O—H...O and intermolecular C—H...F, C—H...O and C—H...π hydrogen bonds. In addition, weak π–π interactions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from F...H/H...F (25.7%), H...H (23.5%) and C...H/H...C (12.6%) interactions.


Author(s):  
Asmaa Saber ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Mohamed Labd Taha ◽  
Joel T. Mague ◽  
...  

In the title molecule, C24H21N5O·H2O, the dihydrobenzodiazole moiety is not quite planar, while the whole molecule adopts a U-shaped conformation in which there is a close approach of the two benzyl groups. In the crystal, chains of alternating molecules and lattice water extending along [201] are formed by O—HUncoordW...ODhyr and O—HUncoordW...NTrz (UncoordW = uncoordinated water, Dhyr = dihydro and Trz = triazole) hydrogen bonds. The chains are connected into layers parallel to (010) by C—HTrz...OUncoordW hydrogen bonds with the dihydrobenzodiazole units in adjacent layers intercalating to form head-to-tail π-stacking [centroid-to-centroid distance = 3.5694 (11) Å] interactions between them, which generates the overall three-dimensional structure. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H...H (52.1%), H...C/C...H (23.8%) and O...H/H...O (11.2%) interactions. Hydrogen-bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Ulviyya F. Askerova ◽  
Aytan A. Niyazova ◽  
...  

In the title compound, C16H12F5N3O, the dihedral angle between the aromatic rings is 31.84 (8)°. In the crystal, the molecules are linked into dimers possessing crystallographic twofold symmetry by pairwise N—H...O hydrogen bonds and weak C—H...O hydrogen bonds and aromatic π–π stacking interactions link the dimers into a three-dimensional network. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from F...H/H...F (41.1%), H...H (21.8%), C...H/H...C (9.7%) C...C (7.1%) and O...H/H...O (7.1%) contacts. The contribution of some disordered solvent to the scattering was removed using the SQUEEZE routine [Spek (2015). Acta Cryst. C71, 9–18] in PLATON. The solvent contribution was not included in the reported molecular weight and density.


2018 ◽  
Vol 74 (9) ◽  
pp. 1211-1214 ◽  
Author(s):  
Mustafa Kemal Gumus ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Valentina A. Kalibabchuk

The title compound, C19H18N4O2, crystallizes with two independent molecules in the asymmetric unit. The triazole ring is inclined to the benzene rings by 9.63 (13) and 87.37 (12)° in one molecule, and by 4.46 (13) and 86.15 (11)° in the other. In the crystal, classical N—H...N hydrogen bonds, weak C—H...O hydrogen bonds and weak C—H...π interactions link the molecules into a three-dimensional supramolecular network. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to investigate the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H...H (51.4%), H...C/C...H (26.7%), H...O/O...H (8.9%) and H...N/N...H (8%) interactions.


2020 ◽  
Vol 76 (9) ◽  
pp. 1535-1538
Author(s):  
M. Renugadevi ◽  
A. Sinthiya ◽  
Kumaradhas Poomani ◽  
Suganya Suresh

In the crystals of the title compound, C5H7N2 +·CNS−·C5H6N2, the components are linked by three N—H...N and two N—H...S hydrogen bonds, resulting in two interpenetrating three-dimensional networks. Hirshfeld surface analysis shows that the most important contributions to the crystal packing are from H...H (36.6%), C...H/H...C (20.4%), S...H/H...S (19.7%) and N...H/H...N (13.4%) interactions.


2020 ◽  
Vol 76 (8) ◽  
pp. 1361-1364
Author(s):  
Emine Berrin Cinar ◽  
Ayman Zouitini ◽  
Youssef Kandri Rodi ◽  
Younes Ouzidan ◽  
Jérôme Marrot ◽  
...  

The title quinoxaline molecule, C23H20N2O2, is not planar, the dihedral angle angle between the mean planes of the benzene rings being 72.54 (15)°. In the crystal, molecules are connected into chains extending parallel to (10\overline{1}) by weak C—H...O hydrogen bonds. Weak C—H...π interactions link the chains, forming a three-dimensional network structure. Hirshfeld surface analysis revealed that the most important contributions for the crystal packing are from H...H (48.7%), H...C/C...H (32.0%), H...O/O...H (15.4%), C...C (1.9%), H...N/N...H (1.1%) contacts.


2018 ◽  
Vol 74 (11) ◽  
pp. 1536-1539
Author(s):  
Sevgi Kansiz ◽  
Irina A. Golenya ◽  
Necmi Dege

The reaction of NiCl2 with fumaric acid and isonicotinamide in a basic solution produces the title complex, [Ni(C6H6N2O)2(H2O)4](C4H2O4). The nickel(II) ion of the complex cation and the fumarate anion are each located on an inversion centre. The NiII ion is coordinated octahedrally by four water O atoms and two N atoms of isonicotinamide molecules. The fumarate anion is linked to neighbouring complex cations via Owater—H...Ofumarate hydrogen bonds. In the crystal, the complex cations are further linked by O—H...O, N—H...O and C—H...O hydrogen bonds, forming a three-dimensional supramolecular architecture. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal and indicate that the most important contributions for the crystal packing are from H...O/O...H (41.8%), H...H (35.3%) and H...C/C...H (10.2%) interactions.


Author(s):  
Sevgi Kansiz ◽  
Md. Serajul Haque Faizi ◽  
Tansu Merve Aydin ◽  
Necmi Dege ◽  
Hasan Icbudak ◽  
...  

The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H...O, N—H...N, O—H...O and C—H...O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O...H/H...O (43.1%) and H...H (24.2%) contacts.


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Gunay Z. Mammadova ◽  
Sixberth Mlowe

In the cation of the title salt, C30H28NO2 +·CF3O3S−, the four tetrahydrofuran rings adopt envelope conformations. In the crystal, pairs of cations are linked by dimeric C—H...O hydrogen bonds, forming two R 2 2(6) ring motifs parallel to the (001) plane. The cations and anions are connected by further C—H...O hydrogen bonds, forming a three-dimensional network structure. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (47.6%), C...H/H...C (20.6%), O...H/H...O (18.0%) and F...H/H...F (9.9%) interactions.


Sign in / Sign up

Export Citation Format

Share Document