anions and cations
Recently Published Documents


TOTAL DOCUMENTS

612
(FIVE YEARS 90)

H-INDEX

50
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 734
Author(s):  
Laura Daza-Serna ◽  
Katarina Knežević ◽  
Norbert Kreuzinger ◽  
Astrid Rosa Mach-Aigner ◽  
Robert Ludwig Mach ◽  
...  

Sustainability and circularity are currently two relevant drivers in the development and optimisation of industrial processes. This study assessed the use of electrodialysis (ED) to purify synthetic erythritol culture broth and for the recovery of the salts in solution, for minimising the generation of waste by representing an efficient alternative to remove ions, ensuring their recovery process contributing to reaching cleaner standards in erythritol production. Removal and recovery of ions was evaluated for synthetic erythritol culture broth at three different levels of complexity using a stepwise voltage in the experimental settings. ED was demonstrated to be a potential technology removing between 91.7–99.0% of ions from the synthetic culture broth, with 49–54% current efficiency. Besides this, further recovery of ions into the concentrated fraction was accomplished. The anions and cations were recovered in a second fraction reaching concentration factors between 1.5 to 2.5 times while observing low level of erythritol losses (<2%), with an energy consumption of 4.10 kWh/m3.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 254
Author(s):  
Fan Yang ◽  
Meng Zhao ◽  
Darren Smith ◽  
Peggy Cebe ◽  
Sam Lucisano ◽  
...  

The synthesis of 1-butyl-2,3-dimethyl-4-vinylimidazolium triflate, its polymerization, and ion exchange to yield a trio of 1-butyl-2,3-dimethyl-4-vinylimidazolium polymers is described. Irrespective of the nature of the anion, substitution at the 2-position of the imidazolium moiety substantially increases the distance between the anion and cation. The methyl substituent at the 2-position also served to expose the importance of H-bonding for the attractive potential between imidazolium moiety and anions in polymers without a methyl group at the 2-position. The thermal characteristics of poly(1-butyl-2,3-dimethyl-4-vinylimidazolium) salts and corresponding poly(1-ethyl-3-methyl-4-vinylimidazolium) salts were evaluated. While the mid-point glass transition temperatures, Tg-mid, for 1-ethyl-3-methyl-4-vinylimidazolium polymers with CF3SO3−, (CF3SO2)2N− and PF6− counterions, were 153 °C, 88 °C and 200 °C, respectively, the Tg-mid values for 1-butyl-2,3-dimethyl-4vinylimidazolium polymers with corresponding counter-ions were tightly clustered at 98 °C, 99 °C and 84 °C, respectively. This dramatically reduced influence of the anion type on the glass transition temperature was attributed to the increased distance between the center of the anions and cations in the 1-butyl-2,3-dimethyl-4-vinylimidazolium polymer set, and minimal H-bonding interactions between the respective anions and the 1-butyl-2,3-dimethyl-4-vinylimidazolium moiety. It is believed that this is the first observation of substantial independence of the glass transition of an ionic polymer on the nature of its counterion.


Author(s):  
Stefan Hervø-Hansen ◽  
Jan Heyda ◽  
Mikael Lund ◽  
Nobuyuki Matubayasi

Salts are inseparable in their perturbation of molecular systems by experimental and computational methods, rendering it difficult to dissect the effects exerted by the anions and cations individually. Here we...


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1545
Author(s):  
Andrej Pustogow ◽  
Daniel Dizdarevic ◽  
Sebastian Erfort ◽  
Olga Iakutkina ◽  
Valentino Merkl ◽  
...  

In the quasi-one-dimensional (TMTTF)2X compounds with effectively quarter-filled bands, electronic charge order is stabilized from the delicate interplay of Coulomb repulsion and electronic bandwidth. The correlation strength is commonly tuned by physical pressure or chemical substitution with stoichiometric ratios of anions and cations. Here, we investigate the charge-ordered state through partial substitution of the anions in (TMTTF)2[AsF6]1−x[SbF6]x with x≈0.3, determined from the intensity of infrared vibrations, which is sufficient to suppress the spin-Peierls state. Our dc transport experiments reveal a transition temperature TCO = 120 K and charge gap ΔCO=430 K between the values of the two parent compounds (TMTTF)2AsF6 and (TMTTF)2SbF6. Upon plotting the two parameters for different (TMTTF)2X, we find a universal relationship between TCO and ΔCO yielding that the energy gap vanishes for transition temperatures TCO≤60 K. While these quantities indicate that the macroscopic correlation strength is continuously tuned, our vibrational spectroscopy results probing the local charge disproportionation suggest that 2δ is modulated on a microscopic level.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Rengan Luo ◽  
Haifeng Lv ◽  
Qiaobo Liao ◽  
Ningning Wang ◽  
Jiarui Yang ◽  
...  

AbstractThe control of charge transfer between radical anions and cations is a promising way for decoding the emission mechanism in electrochemiluminescence (ECL) systems. Herein, a type of donor-acceptor (D-A) covalent organic framework (COF) with triphenylamine and triazine units is designed as a highly efficient ECL emitter with tunable intrareticular charge transfer (IRCT). The D-A COF demonstrates 123 folds enhancement in ECL intensity compared with its benzene-based COF with small D-A contrast. Further, the COF’s crystallinity- and protonation-modulated ECL behaviors confirm ECL dependence on intrareticular charge transfer between donor and acceptor units, which is rationalized by density functional theory. Significantly, dual-peaked ECL patterns of COFs are achieved through an IRCT mediated competitive oxidation mechanism: the coreactant-mediated oxidation at lower potential and the direct oxidation at higher potential. This work provides a new fundamental and approach to improve the ECL efficiency for designing next-generation ECL devices.


Author(s):  
Aboli Kulkarni ◽  
Surajit Roy ◽  
M. Yogeshwaran ◽  
Bhushan Shigwan ◽  
Smrithy Vijayan ◽  
...  

Abstract The freshwater rockpools support high endemic biodiversity but are poorly studied habitats in the Western Ghats biodiversity hotspot. These freshwater rock pools are situated on outcrops at various elevations in the Western Ghats and are composed of different bedrocks such as laterite and basalt. We aimed to analyze the water quality, geographical position based differences in the water chemistry and the role of bedrock in determining the water chemistry of the rock pools. Our study showed a wide range of water quality variables such as pH, conductivity, and ionic contents that attributed to the natural variation. We observed a drastic variation in the anions and cations at low elevation pools. Rock type and precipitation are influencing the ionic concentration, for example, Calcium and Bromide could be attributed to the seasonal precipitation and geomorphology. This documentation of physicochemical properties of the Western Ghats rock pools can form a baseline for further detailed studies.


2021 ◽  
Vol 7 (6) ◽  
Author(s):  
Ghasem Panahi ◽  
Mahya Hassanzadeh Eskafi ◽  
Hamidreza Rahimi ◽  
Alireza Faridhosseini ◽  
Xiaonan Tang

AbstractGroundwater is one of the most important water sources in arid and semi-arid areas. With the increasing world population and the water demand for agriculture and urban use, the need for water resources has increased, especially in arid and semi-arid regions, where groundwater resources play a significant role. To prevent the pollution of groundwater resources, various studies for their preservation and maintenance should be carried out, including a detailed plan for proper management of water resources and establishing a balance between water quality and how to use them. It becomes important to understand the spatial change of the quality of groundwater resources. In this study, Sabzevar plain, a typical region of semi-arid climate in Iran, was selected as a case study to assess the groundwater quality of the region, using data from 24 observation wells between 2015 and 2019. Using Arc GIS software, a map of groundwater quality parameters in the study area was prepared for quality assessment and comparison with existing international standards. The results showed that (except pH and HCO3−) the concentration of Sodium, Magnesium, and other anions and cations is higher than the corresponding WHO standard limit, suggesting that the study area is unsuitable for drinking and agricultural use. According to the Wilcox chart, 87.5% of the samples are in the C4S4 class while 8.33% are in the C4S3 class, showing the groundwater unsuitable for agricultural use due to its high salinity and alkalinity. Piper diagrams show that more than 50% of the samples are non-carbonate alkalis, indicating a very high salinity in the area. According to the pie chart, chlorine ion and sodium ion are the dominant anions and cations in the Sabzevar plain, respectively. The Schuler diagram shows that none of the samples examined were in a good class for drinking. Therefore, considering the importance of water for agricultural activities in the study area, it is recommended to have agricultural management solutions to prevent groundwater mixing with freshwater resources.


2021 ◽  
pp. 55-60
Author(s):  
Aleksandr Valentinovich Lorentsson ◽  
Nadezhda Leonidovna Koroleva ◽  
Yuriy Mitrofanovich Chernoberezhskii

The electrical surface properties (specific surface charge of particles - σ0, point of zero charge – pHPZC, electrokinetic potential - ζ and position of isoelectric point - pHIEP) of dispersions of microcrystalline cellulose (MCC) in aqueous solutions of H2SO4, NaOH, Na2SO4 and TiOSO4 were investigated. Significant effects of specific adsorption of anions and cations on pHPZC and pHIEP have been demonstrated. The isoelectric point of the MCC particles in the H2SO4 solution is at pH 2.0, while the zero charge point in 5·10-4 M solution Na2SO4 at pH 5.6. An explanation of the observed effects is given. Possible schemes of the structure of the electrical double layer at different pH values, taking into account specific adsorption of ions in the Stern layer, are given. The introduction of TiOSO4 (10-5 mol/dm3) shifts the position of IEP to a less acidic region (pHIEP 4.5) due to the specific adsorption of positively charged TiOSO4 hydrolysis products particles.


Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5511
Author(s):  
Eduard Tokar ◽  
Konstantin Maslov ◽  
Ivan Tananaev ◽  
Andrei Egorin

An Se-derivative of amidoxime was synthesized for the first time as a result of the reaction of oxidative polycondensation of N’-hydroxy-1,2,5-oxadiazole-3-carboximidamide with SeO2: its elementary units are linked to each other due to the formation of strong diselenide bridges. The element composition of the material was established, and the structure of the elementary unit was suggested. The sorption-selective properties were evaluated, and it was found that the adsorbent can be used for the selective recovery of U (VI) from liquid media with a pH of 6–9. The effect of some anions and cations on the efficiency of recovery of U (VI) was estimated. Composite materials were fabricated, in which silica gel with a content of 35, 50, and 65 wt.% was used as a matrix to be applied in sorption columns. The maximum values of adsorption of U (VI) calculated using the Langmuir equation were 620–760 mg g−1 and 370 mg g−1 for the composite and non-composite adsorbents, respectively. The increase in the kinetic parameters of adsorption in comparison with those of the non-porous material was revealed, along with the increase in the specific surface area of the composite adsorbents. In particular, the maximum sorption capacity and the rate of absorption of uranium from the solution increased two-fold.


Sign in / Sign up

Export Citation Format

Share Document