scholarly journals Crystal structure and Hirshfeld surface analysis of 2,2′-{(1E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[4-(trifluoromethoxy)phenol]copper(II) hydroquinone hemisolvate

2019 ◽  
Vol 75 (11) ◽  
pp. 1729-1733
Author(s):  
Sevgi Kansiz ◽  
Seher Meral ◽  
Necmi Dege ◽  
Aysen Alaman Agar ◽  
Igor O. Fritsky

In the title complex, [Cu(C18H12F6N2O4)]·0.5C6H6O2, the CuII ion has a square-planar coordination geometry, being ligated by two N and two O atoms of the tetradentate open-chain Schiff base ligand 6,6′-{(1E,1′E)-[ethane-1,2-diylbis(azanylylidene)]bis(methanylylidene)}bis[2-(trifluoromethoxy)phenol]. The crystal packing is stabilized by intramolecular O—H...O and intermolecular C—H...F, C—H...O and C—H...π hydrogen bonds. In addition, weak π–π interactions form a three-dimensional structure. Hirshfeld surface analysis and two-dimensional fingerprint plots were performed and created to analyze the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from F...H/H...F (25.7%), H...H (23.5%) and C...H/H...C (12.6%) interactions.

Author(s):  
Younesse Ait Elmachkouri ◽  
Asmaa Saber ◽  
Ezaddine Irrou ◽  
Bushra Amer ◽  
Joel T. Mague ◽  
...  

The title molecule, C17H26N2O, adopts an L-shaped conformation, with the straight n-decyl chain positioned nearly perpendicular to the dihydrobenzimidazole moiety. The dihydrobenzimidazole portion is not quite planar as there is a dihedral angle of 1.20 (6)° between the constituent planes. In the crystal, N—H...O hydrogen bonds form inversion dimers, which are connected into the three-dimensional structure by C—H...O hydrogen bonds and C—H...π(ring) interactions. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are from H...H (75.9%), H...C/C...H (12.5%) and H...O/O...H (7.0%) interactions. Based on computational chemistry using the CE–B3LYP/6–31 G(d,p) energy model, C—H...O hydrogen bond energies are −74.9 (for N—H...O) and −42.7 (for C—H...O) kJ mol−1.


Author(s):  
Tuncer Hökelek ◽  
Vijdan Yavuz ◽  
Hakan Dal ◽  
Hacali Necefoğlu

In the crystal of the title complex, [Cu(C7H6NO4S)2(C6H6N2O)2(H2O)], the CuIIcation and the O atom of the coordinated water molecule reside on a twofold rotation axis. The CuIIion is coordinated by two carboxylate O atoms of the two symmetry-related 4-sulfamoylbenzoate (SB) anions and by two N atoms of the two symmetry-related nicotinamide (NA) molecules at distances of 1.978 (2) and 2.025 (3) Å, respectively, forming a slightly distorted square-planar arrangement. The distorted square-pyramidal coordination environment is completed by the water O atom in the axial position at a distance of 2.147 (4) Å. In the crystal, the molecules are linkedviaO—H...O and N—H...O hydrogen bonds withR22(8) andR22(18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...O/O...H (42.2%), H...H (25.7%) and H...C/C...H (20.0%) interactions.


2018 ◽  
Vol 74 (11) ◽  
pp. 1536-1539
Author(s):  
Sevgi Kansiz ◽  
Irina A. Golenya ◽  
Necmi Dege

The reaction of NiCl2 with fumaric acid and isonicotinamide in a basic solution produces the title complex, [Ni(C6H6N2O)2(H2O)4](C4H2O4). The nickel(II) ion of the complex cation and the fumarate anion are each located on an inversion centre. The NiII ion is coordinated octahedrally by four water O atoms and two N atoms of isonicotinamide molecules. The fumarate anion is linked to neighbouring complex cations via Owater—H...Ofumarate hydrogen bonds. In the crystal, the complex cations are further linked by O—H...O, N—H...O and C—H...O hydrogen bonds, forming a three-dimensional supramolecular architecture. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal and indicate that the most important contributions for the crystal packing are from H...O/O...H (41.8%), H...H (35.3%) and H...C/C...H (10.2%) interactions.


Author(s):  
Sevgi Kansiz ◽  
Md. Serajul Haque Faizi ◽  
Tansu Merve Aydin ◽  
Necmi Dege ◽  
Hasan Icbudak ◽  
...  

The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H...O, N—H...N, O—H...O and C—H...O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O...H/H...O (43.1%) and H...H (24.2%) contacts.


Author(s):  
Mir Abolfazl Naziri ◽  
Ertan Şahin ◽  
Tuncer Hökelek

The asymmetric unit of the title aroyl hydrazone Schiff base salt, C13H12N3O2+·N O3−, consists of one molecular cation in the keto tautomeric form, adopting anEconfiguration with respect to the azomethine bond, and one nitrate anion. The two units are linkedviaan N—H...O hydrogen bond. The molecule overall is non-planar, with the pyridinium and benzene rings being inclined to each other by 4.21 (4)°. In the crystal, cations and anions are linkedviaintermolecular O—H...O and bifurcated N—H...O hydrogen bonds, forming a two-dimensional network parallel to (101). These networks are further linked by C—H...O hydrogen bonds, forming slabs parallel to (101). The slabs are linked by offset π–π interactions, involving the benzene and pyridinium rings of adjacent slabs [intercentroid distance = 3.610 (2) Å], forming a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...O/O...H (45.1%), H...H (19.3%), H...C/C...H (14.5%), H...N/N...H (7.9%) and C...C (6.0%) interactions.


Author(s):  
Soufiane Akhramez ◽  
Abderrafia Hafid ◽  
Mostafa Khouili ◽  
Mohamed Saadi ◽  
Lahcen El Ammari ◽  
...  

A new quinoline-based hydrazone, C16H12ClN3, was synthesized by a condensation reaction of 2-chloro-3-formylquinoline with phenylhydrazine. The quinoline ring system is essentially planar (r.m.s. deviation = 0.012 Å), and forms a dihedral angle of 8.46 (10)° with the phenyl ring. The molecule adopts anEconfiguration with respect to the central C=N bond. In the crystal, molecules are linked by a C—H...π-phenyl interaction, forming zigzag chains propagating along the [10\overline{3}] direction. The N—H hydrogen atom does not participate in hydrogen bonding but is directed towards the phenyl ring of an adjacent molecule, so linking the chainsviaweak N—H...π interactions to form of a three-dimensional structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...H (35.5%), C...H/H...C (33.7%), Cl...H/H...Cl (12.3%), N...H/H...N (9.5%) contacts.


2018 ◽  
Vol 74 (12) ◽  
pp. 1887-1890 ◽  
Author(s):  
Sevgi Kansiz ◽  
Mustafa Macit ◽  
Necmi Dege ◽  
Vadim A. Pavlenko

The title Schiff base compound, C22H28ClNO, shows mirror symmetry with all its non-H atoms, except thetert-butyl groups, located on the mirror plane. There is an intramolecular O—H...N hydrogen bond present forming anS(6) ring motif. In the crystal, the molecules are connected by C—H...π interactions, generating a three-dimensional supramolecular structure. Hirshfeld surface analysis and two dimensional fingerprint plots were used to analyse the intermolecular interactions present in the crystal, indicating that the most important contributions for the crystal packing are from H...H (68.9%) and C...H/H...C (11.7%) interactions.


Author(s):  
Farid N. Naghiyev ◽  
Maria M. Grishina ◽  
Victor N. Khrustalev ◽  
Ali N. Khalilov ◽  
Mehmet Akkurt ◽  
...  

In the title compound, C28H21N3O, the 1,2-dihydropyridine ring of the 1,2,7,8-tetrahydroisoquinoline ring system is planar as expected, while the cyclohexa-1,3-diene ring has a twist-boat conformation, with Cremer–Pople parameters Q T = 0.367 (2) A, θ = 117.3 (3)° and φ = 327.3 (4)°. The dihedral angles between the best planes through the isoquinoline ring system and the three phenyl rings are 81.69 (12), 82.45 (11) and 47.36 (10)°. In the crystal, molecules are linked via N—H...O and C—H...N hydrogen bonds, forming a three-dimensional network. Furthermore, the crystal packing is dominated by C—H...π bonds with a strong interaction involving the phenyl H atoms. The role of the intermolecular interactions in the crystal packing was clarified using Hirshfeld surface analysis, and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (46.0%), C...H/H...C (35.1%) and N...H/H...N (10.5%) contacts.


Author(s):  
Enis Nadia Md Yusof ◽  
Thahira B. S. A. Ravoof ◽  
Mohamed I. M. Tahir ◽  
Mukesh M. Jotani ◽  
Edward R. T. Tiekink

The complete molecule of the title hydrazine carbodithioate complex, [Ni(C19H21N2S2)2], is generated by the application of a centre of inversion. The NiIIatom isN,S-chelated by two hydrazinecarbodithioate ligands, which provide atrans-N2S2donor set that defines a distorted square-planar geometry. The conformation of the five-membered chelate ring is an envelope with the NiIIatom being the flap atom. In the crystal,p-tolyl-C—H...π(benzene-iPr),iPr-C—H...π(p-tolyl) and π–π interactions [betweenp-tolyl rings with inter-centroid distance = 3.8051 (12) Å] help to consolidate the three-dimensional architecture. The analysis of the Hirshfeld surface confirms the importance of H-atom contacts in establishing the packing.


Author(s):  
Dmitriy F. Mertsalov ◽  
Maryana A. Nadirova ◽  
Elena A. Sorokina ◽  
Marina A. Vinokurova ◽  
Sevim Türktekin Çelikesir ◽  
...  

The title compound, C24H24N2O5S, crystallizes with two independent molecules (A and B) in the asymmetric unit. In the central ring systems of both molecules, the tetrahydrofuran rings adopt envelope conformations, the pyrrolidine rings adopt a twisted-envelope conformation and the six-membered ring is in a boat conformation. In molecules A and B, the nine-membered groups attached to the central ring system are essentially planar (r.m.s. deviations of 0.002 and 0.003 Å, respectively). They form dihedral angles of 64.97 (9) and 56.06 (10)°, respectively, with the phenyl rings. In the crystal, strong intermolecular O—H...O hydrogen bonds and weak intermolecular C—H...O contacts link the molecules, forming a three-dimensional network. In addition weak π–π stacking interactions [centroid-to centroid distance = 3.7124 (13) Å] between the pyrrolidine rings of the nine-membered groups of A molecules are observed. Hirshfeld surface analysis and two-dimensional fingerprint plots were used to quantify the intermolecular interactions present in the crystal, indicating that the environments of the two molecules are very similar. The most important contributions for the crystal packing are from H...H (55.8% for molecule A and 53.5% for molecule B), O...H/H...O (24.5% for molecule A and 26.3% for molecule B) and C...H/H...C (12.6% for molecule A and 15.7% for molecule B) interactions.


Sign in / Sign up

Export Citation Format

Share Document