scholarly journals Crystal structure and Hirshfeld surface analysis of 2-amino-3-hydroxypyridin-1-ium 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide

Author(s):  
Sevgi Kansiz ◽  
Md. Serajul Haque Faizi ◽  
Tansu Merve Aydin ◽  
Necmi Dege ◽  
Hasan Icbudak ◽  
...  

The asymmetric unit of the title compound, C5H7N2O+·C4H4NO4S−, contains one cation and one anion. The 6-methyl-2,2,4-trioxo-2H,4H-1,2,3-oxathiazin-3-ide anion adopts an envelope conformation with the S atom as the flap. In the crystal, the anions and cations are held together by N—H...O, N—H...N, O—H...O and C—H...O hydrogen bonds, thus forming a three-dimensional structure. The Hirshfeld surface analysis and fingerprint plots reveal that the crystal packing is dominated by O...H/H...O (43.1%) and H...H (24.2%) contacts.

Author(s):  
Angel D. Herrera-España ◽  
Jesús Aguilera-González ◽  
Gonzalo J. Mena-Rejón ◽  
Simón Hernández-Ortega ◽  
David Cáceres-Castillo

Two crystallographically independent molecules (A and B) are present in the asymmetric unit of the title compound, C11H9IN2OS, which differ mainly in the dihedral angle between the phenyl and thiazole rings [38.94 (16) and 32.12 (15)°, respectively]. In the crystal, the molecules form ...A...B...A...B... chains along the [001] and [010] directions through moderate N—H...O hydrogen bonds and C—H...π interactions, respectively. The overall three-dimensional network is formed by I...I and I...S interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...C/C...H (26.2%), H...H (20.9%), H...I/I...H (19.4%) and H...O/O...H (6.8%) interactions.


Author(s):  
Hassiba Bougueria ◽  
Souheyla Chetioui ◽  
Mohammed Abdellatif Bensegueni ◽  
Jean-Pierre Djukic ◽  
Nesrine Benarous

The title compound, C16H11ClN2O2, was obtained by diazotization of 2-amino-4-chlorophenol followed by a coupling reaction with β-naphthol. There are two molecules (A and B) in the asymmetric unit. The crystal structure features only one type of intermolecular interaction, that is strong hydrogen bonds involving the hydroxyl group. The naphthol and phenol fragments attached to the C=N—N— moiety exhibit an s-trans conformation. In addition, those fragments are almost coplanar, subtending a dihedral angle of 13.11 (2)° in molecule A and 10.35 (2)° in molecule B. A Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (32.1%), C...H/H...C (23.1%), Cl...H/H...Cl (15.2%), O...H/H...O (12.8%) and C...C (9%) contacts.


2018 ◽  
Vol 74 (10) ◽  
pp. 1513-1516 ◽  
Author(s):  
Sevgi Kansiz ◽  
Mustafa Macit ◽  
Necmi Dege ◽  
Galyna G. Tsapyuk

In the title Schiff base compound, C23H23NO, the two ring systems are twisted by 51.40 (11)° relative to each other. In the crystal, the molecules are connected by weak C—H...π interactions, generating a three-dimensional supramolecular structure. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (67.2%), C...H/H...C (26.7%) and C...C (2.5%) interactions.


2020 ◽  
Vol 76 (9) ◽  
pp. 1535-1538
Author(s):  
M. Renugadevi ◽  
A. Sinthiya ◽  
Kumaradhas Poomani ◽  
Suganya Suresh

In the crystals of the title compound, C5H7N2 +·CNS−·C5H6N2, the components are linked by three N—H...N and two N—H...S hydrogen bonds, resulting in two interpenetrating three-dimensional networks. Hirshfeld surface analysis shows that the most important contributions to the crystal packing are from H...H (36.6%), C...H/H...C (20.4%), S...H/H...S (19.7%) and N...H/H...N (13.4%) interactions.


2018 ◽  
Vol 74 (10) ◽  
pp. 1517-1520 ◽  
Author(s):  
Pinar Sen ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
S. Zeki Yildiz ◽  
Galyna G. Tsapyuk

The asymmetric unit of the title compound, C8H11N3 2+·2Cl−·H2O, contains three organic cations, six chloride anions and three water molecules of crystallization, which are connected by extensive hydrogen-bonding interactions into a three-dimensional supramolecular architecture. Hirshfeld surface analysis and two-dimensional fingerprint plots indicate that the most important contributions to the crystal packing are from H...H (37.4%), Cl...H/H...Cl (35.5%), C...H/H...C (9.5%) and C...C (6.9%) interactions.


2019 ◽  
Vol 75 (9) ◽  
pp. 1372-1378
Author(s):  
Omar Abdellaoui ◽  
Tuncer Hökelek ◽  
Frédéric Capet ◽  
Catherine Renard ◽  
Amal Haoudi ◽  
...  

The title compound, C14H15BrClNO4, consists of a 5-bromoindoline-2,3-dione unit linked to a 1-{2-[2-(2-chloroethoxy)ethoxy]ethyl} moiety. In the crystal, a series of C—H...O hydrogen bonds link the molecules to form a supramolecular three-dimensional structure, enclosing R 2 2(8), R 2 2(12), R 2 2(18) and R 2 2(22) ring motifs. π–π contacts between the five-membered dione rings may further stabilize the structure, with a centroid–centroid distance of 3.899 (2) Å. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (28.1%), H...O/O...H (23.5%), H...Br/Br...H (13.8%), H...Cl/Cl...H (13.0%) and H...C/C...H (10.2%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Density functional theory (DFT) optimized structures at the B3LYP/6-311G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO—LUMO behaviour was elucidated to determine the energy gap. The chloroethoxyethoxyethyl side chain atoms are disordered over two sets of sites with an occupancy ratio of 0.665 (8):0.335 (6).


Author(s):  
Tuncer Hökelek ◽  
Safiye Özkaya ◽  
Hacali Necefoğlu

The asymmetric unit of the title complex, [Cd(C10H11O2)2(C6H6N2O)2(H2O)], contains one half of the complex molecule, with the CdII cation and the coordinated water O atom residing on a twofold rotation axis. The CdII cation is coordinated in a bidentate manner to the carboxylate O atoms of the two symmetry-related 2,4,6-trimethylbenzoate (TMB) anions and to the water O atom at distances of 2.297 (2), 2.527 (2) and 2.306 (3) Å to form a distorted pentagonal arrangement, while the distorted pentagonal–bipyramidal coordination sphere is completed by the two pyridine N atoms of the two symmetry-related monodentate nicotinamide (NA) ligands at distances of 2.371 (3) Å in the axial positions. In the crystal, molecules are linked via intermolecular N—H...O, O—H...O and C—H...O hydrogen bonds with R 2 2(12), R 3 3(8), R 3 3(14), R 3 3(16), R 3 3(20), R 3 3(22), R 4 4(22), R 5 5(16), R 6 6(16) and R 6 6(18) ring motifs, forming a three-dimensional architecture. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are H...H (56.9%), H...C/C...H (21.3%) and H...O/O...H (19.0%) interactions.


Author(s):  
Mohamed Samba ◽  
Mohamed Said Minnih ◽  
Tuncer Hökelek ◽  
Manpreet Kaur ◽  
Jerry P. Jasinski ◽  
...  

The title compound, C17H18N2O3, is constructed from a benzodiazepine ring system linked to a pendant dihydropyran ring, where the benzene and pendant dihydropyran rings are oriented at a dihedral angle of 15.14 (4)°. Intramolecular N—HDiazp...ODhydpand C—HDiazp...ODhydp(Diazp = diazepine and Dhydp = dihydropyran) hydrogen bonds link the seven-membered diazepine ring to the pendant dihydropyran ring, enclosingS(6) ring motifs. In the crystal, N—HDiazp...ODhydphydrogen bonds link the molecules into infinite chains along [10\overline{1}]. These chains are further linkedviaC—HBnz...ODhydp, C—HDhydp...ODhydpand C—HMth...ODhydp(Bnz = benzene and Mth = methyl) hydrogen bonds, forming a three-dimensional network. The observed weak C—HDiazp... π interaction may further stabilize the structure. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (51.1%), H...C/C...H (25.3%) and H...O/O...H (20.3%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing.


2020 ◽  
Vol 76 (7) ◽  
pp. 1033-1037
Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Sevinc H. Mukhtarova ◽  
Gulnar T. Suleymanova ◽  
...  

The title compound, C16H14Cl3N3, comprises three molecules of similar shape in the asymmetric unit. The crystal cohesion is ensured by intermolecular C—H...N and C—H...Cl hydrogen bonds in addition to C—Cl...π interactions. Hirshfeld surface analysis and two-dimensional fingerprint plots reveal that Cl...H/H...Cl (33.6%), H...H (27.9%) and C...H/H...C (17.6%) are the most important contributors towards the crystal packing.


Author(s):  
Namiq Q. Shikhaliyev ◽  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Nigar E. Ahmadova ◽  
Rizvan K. Askerov ◽  
...  

In the molecule of the title compound, C22H14Cl4N4, the central benzene ring makes dihedral angles of 77.03 (9) and 81.42 (9)° with the two approximately planar 2,2-dichloro-1-[(E)-phenyldiazenyl]vinyl groups. In the crystal, molecules are linked by C—H...π, C—Cl...π, Cl...Cl and Cl...H interactions, forming a three-dimensional network. The Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...H (30.4%), C...H/H...C (20.4%), Cl...H/H...Cl (19.4%), Cl...Cl (7.8%) and Cl...C/C...Cl (7.3%) interactions.


Sign in / Sign up

Export Citation Format

Share Document