scholarly journals Crystal structure and Hirshfeld surface analysis of 2-{[(E)-(3-cyclobutyl-1H-1,2,4-triazol-5-yl)imino]methyl}phenol

Author(s):  
Mustafa Kemal Gumus ◽  
Fatih Sen ◽  
Sevgi Kansiz ◽  
Necmi Dege ◽  
Eiad Saif

The title compound, C13H14N4O, was developed using the reaction of salicylaldehyde and 3-amino-5-cyclobutyl-1,2,4-triazole in ethanol under microwave irradiation. This eco-friendly microwave-promoted method proved to be efficient in the synthesis of 2-{[(E)-(3-cyclobutyl-1H-1,2,4-triazol-5-yl)imino]methyl}phenol in good yields and purity. The title compound is a Schiff base that exists in the phenol–imine tautomeric form and adopts an E configuration. The three independent molecules in the asymmetric unit (A, B and C) are not planar, the cyclobutyl and the phenol-imine rings are twisted to each other making a dihedral angle of 67.8 (4)° in molecule A, 69.1 (2)° in molecule B and 89.1 (2)° in molecule C. In each molecule an intramolecular O—H...N hydrogen bond is present, forming an S(6) ring motif. A Hirshfeld surface analysis was performed to investigate the contributions of the different intermolecular contacts within the supramolecular structure. The major interactions are H...H (53%), C...H (19%) and N...H (17%) for molecule A, H...H (50%), N...H (20%) and C...H (20%) for molecule B and H...H (57%), C...H (14%) and N...H (13%) for molecule C.

Author(s):  
Dmitriy F. Mertsalov ◽  
Kseniia A. Alekseeva ◽  
Magrycheva S. Daria ◽  
Maxim E. Cheshigin ◽  
Sevim Türktekin Çelikesir ◽  
...  

The asymmetric unit of the title compound, C15H12Br2F3NO2, consists of two crystallographically independent molecules. In both molecules, the pyrrolidine and tetrahydrofuran rings adopt an envelope conformation. In the crystal, molecule pairs generate centrosymmetric rings with R 2 2(8) motifs linked by C—H...O hydrogen bonds. These pairs of molecules form a tetrameric supramolecular motif, leading to molecular layers parallel to the (100) plane by C—H...π and C—Br...π interactions. Interlayer van der Waals and interhalogen interactions stabilize molecular packing. The F atoms of the CF3 groups of both molecules are disordered over two sets of sites with refined site occupancies of 0.60 (3)/0.40 (3) and 0.640 (15)/0.360 (15). The most important contributions to the surface contacts of both molecules are from H...H (23.8 and 22.4%), Br...H/H...Br (18.3 and 12.3%), O...H/H...O (14.3 and 9.7%) and F...H/H...F (10.4 and 19.1%) interactions, as concluded from a Hirshfeld surface analysis.


2018 ◽  
Vol 74 (12) ◽  
pp. 1857-1861 ◽  
Author(s):  
Ali Ben-Yahia ◽  
Youness El Bakri ◽  
Chin-Hung Lai ◽  
El Mokhtar Essassi ◽  
Joel T. Mague

The asymmetric unit of the title compound, C14H11N3O3, consists of two independent molecules having very similar conformations in which the indazole moieties are planar. The independent molecules are distinguished by small differences in the rotational orientations of the nitro groups. In the crystal, N—H...O and C—H...O hydrogen bonds form zigzag chains along the b-axis direction. Additional C—H...O hydrogen bonds link the chains into layers parallel to (10\overline{1}). These are connected by slipped π-stacking and C—H...π(ring) interactions.


Author(s):  
Yassine El Ghallab ◽  
Sanae Derfoufi ◽  
El Mostafa Ketatni ◽  
Mohamed Saadi ◽  
Lahcen El Ammari

The asymmetric unit of the title compound, C10H11NO4, which was synthesized via nitration reaction of eugenol (4-allyl-2-methoxyphenol) with a mixture of nitric acid and sulfuric acid, consists of three independent molecules of similar geometry. Each molecule displays an intramolecular hydrogen bond involving the hydroxide and the nitro group forming an S(6) motif. The crystal cohesion is ensured by intermolecular C—H...O hydrogen bonds in addition to π–π stacking interactions between the aromatic rings [centroid–centroid distances = 3.6583 (17)–4.0624 (16) Å]. The Hirshfeld surface analysis and the two-dimensional fingerprint plots show that H...H (39.6%), O...H/H...O (37.7%), C...H/H...C (12.5%) and C...C (4%) are the most important contributors towards the crystal packing.


2018 ◽  
Vol 9 (4) ◽  
pp. 347-352
Author(s):  
Abdullah Aydin ◽  
Mehmet Akkurt ◽  
Zehra Tugce Gur ◽  
Erden Banoglu

The title compound, C13H12Cl2N2O2, crystallizes with six molecules in the asymmetric unit, such that, the 1H-pyrazole rings are essentially planar. The six molecules are stabilized by intramolecular C-H···N and C-H···Cl interactions and the crystal structure is stabilized by intermolecular C-H···O hydrogen bonds, forming molecular sheets into paralel to the (-1 1 0) plane. These sheets are connected to each other by C-H···O hydrogen bonds and C-H···π interactions. In the Hirshfeld surface analysis, the H···H, Cl···H/H···Cl, C···H/H···C, O···H/H···O, N···H/H···N, Cl···Cl, Cl···O/O···Cl interactions add to 95.8% of the intermolecular contacts of the Hirshfeld surface area. The remaining contributions (2.9%) correspond to Cl···C/C···Cl, C···O/O···C, O···O and N···N interactions. Crystal Data for C13H12Cl2N2O2 (M = 299.15 g/mol): Triclinic, space group P-1 (no. 2), a = 12.0505(10) Å, b = 12.3189(11) Å, c = 29.184(3) Å, α = 88.565(4)°, β = 89.296(4)°, γ = 76.833(4)°, V = 4217.0(7) Å3, Z = 12, T = 296(2) K, μ(MoKα) = 0.460 mm-1, Dcalc = 1.414 g/cm3, 83073 reflections measured (2.8° ≤ 2Θ ≤ 47°), 12426 unique (Rint = 0.0411, Rsigma = 0.0235) which were used in all calculations. The final R1 was 0.0662 (I > 2σ(I)) and wR2 was 0.2481 (all data).


Author(s):  
Sevim Türktekin Çelikesir ◽  
S. N. Sheshadri ◽  
Mehmet Akkurt ◽  
C. S. Chidan Kumar ◽  
M. K. Veeraiah

The molecular structure of the title compound, C17H14ClFO3, consists of a 4-chloro-3-fluorophenyl ring and a 3,4-dimethoxyphenyl ring linked via a prop-2-en-1-one spacer. The molecule has an E configuration about the C=C bond and the carbonyl group is syn with respect to the C=C bond. The F and H atoms at the meta positions of the 4-chloro-3-fluorophenyl ring are disordered over two orientations, with an occupancy ratio of 0.785 (3):0.215 (3). In the crystal, molecules are linked via pairs of C—H...O interactions with an R 2 2(14) ring motif, forming inversion dimers. The dimers are linked into a tape structure running along [10\overline{1}] by a C—H...π interaction. The intermolecular contacts in the crystal were further analysed using Hirshfield surface analysis, which indicates that the most significant contacts are H...H (25.0%), followed by C...H/H...C (20.6%), O...H/H...O (15.6%), Cl...H/H...Cl (10.7%), F...H/H...F (10.4%), F...C/C...F (7.2%) and C...C (3.0%).


2018 ◽  
Vol 74 (10) ◽  
pp. 1455-1459
Author(s):  
Akshatha R. Salian ◽  
Sabine Foro ◽  
S. Madan Kumar ◽  
B. Thimme Gowda

The asymmetric unit of the title compound, C17H16N4O6, contains two independent molecules (A and B). The two benzene rings are twisted by an angle of 79.14 (7)° in molecule A, whereas, in molecule B, they are inclined by 19.02 (14)°. The conformations of the molecules are stabilized by intramolecular N—H...O hydrogen bonds between the amide nitrogen atom and the O atom of the ortho-nitro substituent on the phenyl ring, enclosing an S(6) ring motif. In the amide and aliphatic segments, all the N—H, C=O and C—H bonds are anti to each other. In the crystal, the A and B molecules are linked by intermolecular amide-to-amide N—H...O hydrogen bonds, resulting in chains running along the b-axis direction. The intermolecular interactions were analysed using Hirshfeld surface analysis. The two-dimensional fingerprint plots of the intermolecular contacts indicate that the major contributions are from H...H and O...H interactions.


Author(s):  
Angel D. Herrera-España ◽  
Jesús Aguilera-González ◽  
Gonzalo J. Mena-Rejón ◽  
Simón Hernández-Ortega ◽  
David Cáceres-Castillo

Two crystallographically independent molecules (A and B) are present in the asymmetric unit of the title compound, C11H9IN2OS, which differ mainly in the dihedral angle between the phenyl and thiazole rings [38.94 (16) and 32.12 (15)°, respectively]. In the crystal, the molecules form ...A...B...A...B... chains along the [001] and [010] directions through moderate N—H...O hydrogen bonds and C—H...π interactions, respectively. The overall three-dimensional network is formed by I...I and I...S interactions. Hirshfeld surface analysis indicates that the most important contributions to the crystal packing are from H...C/C...H (26.2%), H...H (20.9%), H...I/I...H (19.4%) and H...O/O...H (6.8%) interactions.


2018 ◽  
Vol 74 (11) ◽  
pp. 1669-1673 ◽  
Author(s):  
Karim Chkirate ◽  
Nada Kheira Sebbar ◽  
Tuncer Hökelek ◽  
Damodaran Krishnan ◽  
Joel T. Mague ◽  
...  

The asymmetric unit of the title compound, C16H20N2O2, consists of two independent molecules differing slightly in the conformations of the seven-membered rings and the butyl substituents, where the benzene rings are oriented at a dihedral angle of 34.56 (3)°. In the crystal, pairwise intermolecular C—H...O and complementary intramolecular C—H...O hydrogen bonds form twisted strips extending parallel to (012). These strips are connected into layers parallel to (111) by additional intermolecular C—H...O hydrogen bonds. The layers are further joined by C—H...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (65.5%), H...C/C...H (16.0%) and H...O/O...H (15.8%) interactions.


Author(s):  
Dmitriy F. Mertsalov ◽  
Vladimir P. Zaytsev ◽  
Kuzma M. Pokazeev ◽  
Mikhail S. Grigoriev ◽  
Alexander V. Bachinsky ◽  
...  

The title compound, C15H15Br2NO2, crystallizes with two molecules in the asymmetric unit of the unit cell. In both molecules, the tetrahydrofuran rings adopt an envelope conformation with the O atom as the flap and the pyrrolidine rings adopt an envelope conformation. In the crystal, molecules are linked by weak C—H...O hydrogen bonds, forming sheets lying parallel to the (002) plane. These sheets are connected only by weak van der Waals interactions. The most important contributions to the surface contacts are from H...H (44.6%), Br...H/H...Br (24.1%), O...H/H...O (13.5%) and C...H/H...C (11.2%) interactions, as concluded from a Hirshfeld surface analysis.


Author(s):  
Sevgi Kansiz ◽  
Adem Gul ◽  
Necmi Dege ◽  
Erbil Agar ◽  
Eiad Saif

The title compound, C16H17NO, is a Schiff base that exists in the enol–imine tautomeric form and adopts a Z configuration. The molecule is non-planar, with the twisted rings making a dihedral angle of 39.92 (4)°. The intramolecular O—H...N hydrogen bond forms an S(6) ring motif. In the crystal, molecules are linked by C—H...π interactions and very weak π-π stacking interactions also help to consolidate the crystal packing. A Hirshfeld surface analysis was performed to investigate the contributions of different intermolecular contacts within the supramolecular structure. The major contributions are from H...H (65%), C...H (19.2%) and O...H (6.6%) interactions.


Sign in / Sign up

Export Citation Format

Share Document