scholarly journals Crystal structure and Hirshfeld surface analysis of methyl 1-(2,4-dichlorobenzyl)-5-methyl-1H-pyrazole-3-carboxylate

2018 ◽  
Vol 9 (4) ◽  
pp. 347-352
Author(s):  
Abdullah Aydin ◽  
Mehmet Akkurt ◽  
Zehra Tugce Gur ◽  
Erden Banoglu

The title compound, C13H12Cl2N2O2, crystallizes with six molecules in the asymmetric unit, such that, the 1H-pyrazole rings are essentially planar. The six molecules are stabilized by intramolecular C-H···N and C-H···Cl interactions and the crystal structure is stabilized by intermolecular C-H···O hydrogen bonds, forming molecular sheets into paralel to the (-1 1 0) plane. These sheets are connected to each other by C-H···O hydrogen bonds and C-H···π interactions. In the Hirshfeld surface analysis, the H···H, Cl···H/H···Cl, C···H/H···C, O···H/H···O, N···H/H···N, Cl···Cl, Cl···O/O···Cl interactions add to 95.8% of the intermolecular contacts of the Hirshfeld surface area. The remaining contributions (2.9%) correspond to Cl···C/C···Cl, C···O/O···C, O···O and N···N interactions. Crystal Data for C13H12Cl2N2O2 (M = 299.15 g/mol): Triclinic, space group P-1 (no. 2), a = 12.0505(10) Å, b = 12.3189(11) Å, c = 29.184(3) Å, α = 88.565(4)°, β = 89.296(4)°, γ = 76.833(4)°, V = 4217.0(7) Å3, Z = 12, T = 296(2) K, μ(MoKα) = 0.460 mm-1, Dcalc = 1.414 g/cm3, 83073 reflections measured (2.8° ≤ 2Θ ≤ 47°), 12426 unique (Rint = 0.0411, Rsigma = 0.0235) which were used in all calculations. The final R1 was 0.0662 (I > 2σ(I)) and wR2 was 0.2481 (all data).

Author(s):  
Dmitriy F. Mertsalov ◽  
Kseniia A. Alekseeva ◽  
Magrycheva S. Daria ◽  
Maxim E. Cheshigin ◽  
Sevim Türktekin Çelikesir ◽  
...  

The asymmetric unit of the title compound, C15H12Br2F3NO2, consists of two crystallographically independent molecules. In both molecules, the pyrrolidine and tetrahydrofuran rings adopt an envelope conformation. In the crystal, molecule pairs generate centrosymmetric rings with R 2 2(8) motifs linked by C—H...O hydrogen bonds. These pairs of molecules form a tetrameric supramolecular motif, leading to molecular layers parallel to the (100) plane by C—H...π and C—Br...π interactions. Interlayer van der Waals and interhalogen interactions stabilize molecular packing. The F atoms of the CF3 groups of both molecules are disordered over two sets of sites with refined site occupancies of 0.60 (3)/0.40 (3) and 0.640 (15)/0.360 (15). The most important contributions to the surface contacts of both molecules are from H...H (23.8 and 22.4%), Br...H/H...Br (18.3 and 12.3%), O...H/H...O (14.3 and 9.7%) and F...H/H...F (10.4 and 19.1%) interactions, as concluded from a Hirshfeld surface analysis.


2018 ◽  
Vol 74 (12) ◽  
pp. 1857-1861 ◽  
Author(s):  
Ali Ben-Yahia ◽  
Youness El Bakri ◽  
Chin-Hung Lai ◽  
El Mokhtar Essassi ◽  
Joel T. Mague

The asymmetric unit of the title compound, C14H11N3O3, consists of two independent molecules having very similar conformations in which the indazole moieties are planar. The independent molecules are distinguished by small differences in the rotational orientations of the nitro groups. In the crystal, N—H...O and C—H...O hydrogen bonds form zigzag chains along the b-axis direction. Additional C—H...O hydrogen bonds link the chains into layers parallel to (10\overline{1}). These are connected by slipped π-stacking and C—H...π(ring) interactions.


Author(s):  
Adnan M. Qadir ◽  
Sevgi Kansiz ◽  
Georgina M. Rosair ◽  
Necmi Dege ◽  
Turganbay S. Iskenderov

In the title compound, diaquabis(ethylenediamine-κ2 N,N′)copper(II) bis(2-nitrobenzoate), [Cu(C2H8N2)2(H2O)2](C7H4NO4)2, two diaquabis(ethylenediamine)copper(II) cations and four nitrobenzoate anions are present in the asymmetric unit. All four anions are `whole-molecule' disordered over two sets of sites. The major components have refined occupancies of 0.572 (13), 0.591 (9), 0.601 (9) and 0.794 (10). The CuII ions exhibit slightly distorted octahedral geometries. In the crystal, cations and anions are connected to each other via N—H...O and O—H...O hydrogen bonds, forming a two-dimensional network parallel to (200). The intermolecular contacts in the crystal were further analysed using Hirshfeld surface analysis, which indicates that the most significant contacts are O...H/H...O (42.9%), followed by H...H (35.7%), C...H/H...C (14.2%), C...C (2.9%), C...O/O...C (2.2%), N...H/H...N (0.9%) and N...O/O...N (0.3%).


Author(s):  
Ponnusamy Poornima Devi ◽  
Doraisamyraja Kalaivani

The asymmetric unit of the title salt C9H8N+·C12H9N4O7−, which exhibits anticonvulsant and hypnotic activities, comprises one anion and one cation interactingviaan N—H...O hydrogen bond. In the anion, the six-membered rings are inclined each to other at 42.78 (9)°. The nitro groups in the 2,4-dinitrophenyl fragment attached to the aromatic ring in theparaandorthopositions are twisted from its plane by 3.1 (2) and 45.5 (2)°, respectively. In the crystal, weak C—H...O hydrogen bonds consolidate the crystal packing. The Hirshfeld surface analysis revealed that O...H/H...O intermolecular contacts predominate in the crystal packing.


Author(s):  
Dmitriy F. Mertsalov ◽  
Vladimir P. Zaytsev ◽  
Kuzma M. Pokazeev ◽  
Mikhail S. Grigoriev ◽  
Alexander V. Bachinsky ◽  
...  

The title compound, C15H15Br2NO2, crystallizes with two molecules in the asymmetric unit of the unit cell. In both molecules, the tetrahydrofuran rings adopt an envelope conformation with the O atom as the flap and the pyrrolidine rings adopt an envelope conformation. In the crystal, molecules are linked by weak C—H...O hydrogen bonds, forming sheets lying parallel to the (002) plane. These sheets are connected only by weak van der Waals interactions. The most important contributions to the surface contacts are from H...H (44.6%), Br...H/H...Br (24.1%), O...H/H...O (13.5%) and C...H/H...C (11.2%) interactions, as concluded from a Hirshfeld surface analysis.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Nicoleta Caimac ◽  
Elena Melnic ◽  
Diana Chisca ◽  
Marina S. Fonari

The title compound crystallises in the triclinic centrosymmetric space group P1̄ with an intriguing high number of crystallographically unique binary salt-like adducts (Z′ = 8) and a total number of ionic species (Z′′ = 16) in the asymmetric unit.


Author(s):  
C. John McAdam ◽  
Jim Simpson

The racemic title compound, [Fe(C5H5)(C16H27O2)], comprises an α,ω-diol-substituted undecyl chain with a ferrocenyl substituent at at one terminus. The alkane chain is inclined to the substituted ring of the ferrocene grouping by 84.22 (13)°. The ferrocene rings are almost eclipsed and parallel. The crystal structure features O—H...O and C—H...O hydrogen bonds and C—H...π contacts that stack the molecules along the c-axis direction. A Hirshfeld surface analysis reveals that H...H interactions (83.2%) dominate the surface contacts.


Author(s):  
Nasiba Pirnazarova ◽  
Ubaydullo Yakubov ◽  
Sevara Allabergenova ◽  
Akmaljon Tojiboev ◽  
Kambarali Turgunov ◽  
...  

The asymmetric unit of the title compound, C16H13N3OS, comprises two molecules (A and B) with similar conformations that differ mainly in the orientation of the phenyl group relative to the rest of the molecule, as expressed by the Cthioamide—Nthioamide—Cphenyl—Cphenyl torsion angle of 49.3 (3)° for molecule A and of 5.4 (3)° for molecule B. In the crystal, two intermolecular N—H...N hydrogen bonds lead to the formation of a dimer with R 2 2(10) graph-set notation. A Hirshfeld surface analysis revealed that H...H interactions are the most important intermolecular interactions, contributing 40.9% to the Hirshfeld surface.


Author(s):  
Sevgi Kansiz ◽  
Adnan M. Qadir ◽  
Necmi Dege ◽  
Li Yongxin ◽  
Eiad Saif

The reaction of copper(II) sulfatepentahydrate with 2-nitrobenzoic acid and N,N,N′,N′-tetramethylethylenediamine (TMEDA) in basic solution produces the complex bis(2-nitrobenzoato-κO)(N,N,N′,N′-tetramethylethylenediamine-κ2 N,N′)copper(II), [Cu(C7H4NO4)2(C6H16N2)] or [Cu(2-nitrobenzoate)2(tmeda)]. Each carboxylate group of the 2-nitrobenzoate ligand is coordinated by CuII atom in a monodentate fashion and two TMEDA ligand nitrogen atoms are coordinate by the metal center, giving rise to a distorted square-planar coordination environment. In the crystal, metal complexes are linked by centrosymmetric C—H...O hydrogen bonds, forming ribbons via a R 2 2(10) ring motif. These ribbons are linked by further C—H...O hydrogen bonds, leading to two-dimensional hydrogen-bonded arrays parallel to the bc plane. Weak π–π stacking interactions provide additional stabilization of the crystal structure. Hirshfeld surface analysis, dnorm and two-dimensional fingerprint plots were examined to verify the contributions of the different intermolecular contacts within the supramolecular structure. The major interactions of the complex are O...H/H...O (44.9%), H...H (34%) and C...H (14.5%).


Author(s):  
Zeliha Atioğlu ◽  
Mehmet Akkurt ◽  
Namiq Q. Shikhaliyev ◽  
Gulnar T. Suleymanova ◽  
Khanim N. Bagirova ◽  
...  

In the title compound, C14H8Cl2FN3O2, the 4-fluorophenyl ring and the nitro-substituted benzene ring form a dihedral angle of 63.29 (8)°. In the crystal, molecules are linked by C—H...O hydrogen bonds into chains running parallel to the c axis. The crystal packing is further stabilized by C—Cl...π, C—F...π and N—O...π interactions. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions to the crystal packing are from H...O/O...H (15.5%), H...H (15.3%), Cl...H/H...Cl (13.8%), C...H/H...C (9.5%) and F...H/H...F (8.2%) interactions.


Sign in / Sign up

Export Citation Format

Share Document