The crystal structure of Proteus vulgaris tryptophan indole-lyase complexed with oxindolyl-L-alanine: implications for the reaction mechanism

2018 ◽  
Vol 74 (8) ◽  
pp. 748-759
Author(s):  
Robert S. Phillips ◽  
Adriaan A. Buisman ◽  
Sarah Choi ◽  
Anusha Hussaini ◽  
Zachary A. Wood

Tryptophan indole-lyase (TIL) is a bacterial enzyme which catalyzes the reversible formation of indole and ammonium pyruvate from L-tryptophan. Oxindolyl-L-alanine (OIA) is an inhibitor of TIL, with a K i value of about 5 µM. The crystal structure of the complex of Proteus vulgaris TIL with OIA has now been determined at 2.1 Å resolution. The ligand forms a closed quinonoid complex with the pyridoxal 5′-phosphate (PLP) cofactor. The small domain rotates about 10° to close the active site, bringing His458 into position to donate a hydrogen bond to Asp133, which also accepts a hydrogen bond from the heterocyclic NH of the inhibitor. This brings Phe37 and Phe459 into van der Waals contact with the aromatic ring of OIA. Mutation of the homologous Phe464 in Escherichia coli TIL to Ala results in a 500-fold decrease in k cat/K m for L-tryptophan, with less effect on the reaction of other nonphysiological β-elimination substrates. Stopped-flow kinetic experiments of F464A TIL show that the mutation has no effect on the formation of quinonoid intermediates. An aminoacrylate intermediate is observed in the reaction of F464A TIL with S-ethyl-L-cysteine and benzimidazole. A model of the L-tryptophan quinonoid complex with PLP in the active site of P. vulgaris TIL shows that there would be a severe clash of Phe459 (∼1.5 Å apart) and Phe37 (∼2 Å apart) with the benzene ring of the substrate. It is proposed that this creates distortion of the substrate aromatic ring out of plane and moves the substrate upwards on the reaction coordinate towards the transition state, thus reducing the activation energy and accelerating the enzymatic reaction.

2007 ◽  
Vol 63 (11) ◽  
pp. o4278-o4278
Author(s):  
Alexandra M. Z. Slawin ◽  
William T. A. Harrison

In the title compound, C9H13N2O+·I−, the dihedral angle between the aromatic ring and the N-acetyl group is 73.93 (8)°. In the crystal structure, the cation and anion interact by way of an N—H...I hydrogen bond.


2015 ◽  
Vol 71 (6) ◽  
pp. o425-o425 ◽  
Author(s):  
Farook Adam ◽  
Nadiah Ameram ◽  
Wai Mun Tan

There are two molecules in the asymmetric unit of the title compound, C9H10N2OS. In one, the dihedral angle between the aromatic ring and the carbamothioyl group is 52.31 (7)° and in the other it is 36.16 (6)°. Each molecule features an intramolecular N—H...O hydrogen bond, which generates anS(6) ring and the O and S atoms have anantidisposition. In the crystal, molecules are linked by N—H...S and N—H...O hydrogen bonds, generating separate [130] and [1-30] infinite chains. Weak C—H...O and C—H...S interactions are also observed.


2021 ◽  
Vol 9 ◽  
Author(s):  
Xiao Zhang ◽  
Xiaoyuan Liu ◽  
Zhiyang Zhang ◽  
Yuan Zhao ◽  
Chaojie Wang

Glucosamine 6-phosphate deaminase (NagB) influences the direction of N-acetylglucosamine (GlcNAc) metabolism, facilitating the conversion of D-glucosamine 6-phosphate (GlcN6P) to D-fructose 6-phosphate (Fru6P) with the release of ammonia. Here, extensive molecular dynamics simulations combined with various techniques were performed to study the recognition and delivery process of GlcN6P by SmuNagB, due to its guidance of subsequent enzymatic reaction. The key residues Lys194, His130, Arg127, Thr38, and Ser37 stabilize GlcN6P in the active site by hydrogen bond interactions, therein electrostatic and polar solvent effects provide the primary traction. Four delivery channels were identified, with GlcN6P most likely to enter the active site of NagB through a “door” comprising residues 6–10, 122–136, and 222–233. The corresponding mechanism and thermodynamic properties were investigated. An exothermic recognition and delivery process were detected, accompanied by the flipping of GlcN6P and changes in key direct and indirect hydrogen bond interactions, which provide the driving force for the chemical reaction to occur. Furthermore, “the lid motif” was identified that remain open in alkaline condition with different extent of opening at each stage of transfer that induced GlcN6P to move the active site of NagB. The work will assist in the elucidation of the catalytic mechanism of action of NagB, allowing inhibitors to be designed with superior dynamic behavior.


2017 ◽  
Vol 68 (6) ◽  
pp. 1159-1162
Author(s):  
Ionel Humelnicu ◽  
Violeta Vasilache

The synthesis and X-ray crystal structure of a new class of fused heterocycle with 8,9-dihydro-pyridazino[1,2,4]triazine type 2 is reported. The synthesis is facile and efficient and, the structure of compounds was proven by elemental and spectral analysis, the X-ray spectra including (for 2b). The compound crystallizes in the space group P21/N (monoclinic) with a = 9.0077(2) �, b = 10.20019(18) �, c = 14.0099(3) �, a= 90�, b = 89.768(2)�, g= 90�, V= 1287.22(5) and Z = 4. Accurate molecular parameters for the heterocyclic system were obtained from intensity data collected at 200(14) K. The molecule 8,9-dihydro-pyridazino[1,2,4]triazine type 2 is a noncoplanar bicyclic fused system, with an envelope shape onto the triazine moiety, the C12 carbon being out of plane. The methyl group from the C12 carbon it is almost perpendicular on the triazine plane. We also notice a rather powerful hydrogen bond between hydrogen atom from N1 and the oxygen from the C11=O1 carbonyl group.


2002 ◽  
Vol 364 (1) ◽  
pp. 165-171 ◽  
Author(s):  
Peter H. REHSE ◽  
Ming ZHOU ◽  
Sheng-Xiang LIN

Dehydroepiandrosterone sulphotransferase (DHEA-ST) is an enzyme that converts dehydroepiandrosterone (DHEA), and some other steroids, into their sulphonated forms. The enzyme catalyses the sulphonation of DHEA on the 3α-oxygen, with 3′-phosphoadenosine-5′-phosphosulphate contributing the sulphate. The structure of human DHEA-ST in complex with its preferred substrate DHEA has been solved here to 1.99Å using molecular replacement with oestradiol sulphotransferase (37% sequence identity) as a model. Two alternative substrate-binding orientations have been identified. The primary, catalytic, orientation has the DHEA 3α-oxygen and the highly conserved catalytic histidine in nearly identical positions as are seen for the related oestradiol sulphotransferase. The substrate, however, shows rotations of up to 30°, and there is a corresponding rearrangement of the protein loops contributing to the active site. This may also reflect the low identity between the two enzymes. The second orientation penetrates further into the active site and can form a potential hydrogen bond with the desulphonated cofactor 3′,5′-phosphoadenosine (PAP). This second site contains more van der Waal interactions with hydrophobic residues than the catalytic site and may also reflect the substrate-inhibition site. The PAP position was obtained from the previously solved structure of DHEA-ST co-crystallized with PAP. This latter structure, due to the arrangement of loops within the active site and monomer interactions, cannot bind substrate. The results presented here describe details of substrate binding to DHEA-ST and the potential relationship to substrate inhibition.


Author(s):  
Gan Ren ◽  
Ge Sang

The title compound,, [Fe4Ni(C3H6S2)2(C7H14S4)(CO)10]·2CH2Cl2, is reported as a biomimic model for the active site of [FeFe]-hydrogenases. Bis(2-mercaptoethyl)-1,3-propanedithio ether nickel(II) was firstly introduced into [Fe2(C3H6S2)(CO)5] as an S-containing ligand. It coordinates with two [Fe2(C3H6S2)(CO)5] groups, and a five-metal core complex is formed. The Fe2S2core is in a butterfly conformation. The Fe—Fe distances in the [Fe2(C3H6S2)(CO)5] groups are 2.5126 (6) and 2.5086 (7) Å. The distances between the adjacent Fe and Ni atoms are 3.5322 (1) and 3.5143 (1) Å. There are intramolecular C—H...O and C—H...S contacts present in the complex. In the crystal, the five metal cores are linkedviaC—H...O hydrogen bonds, forming columns lying parallel to (110). The dichloromethane solvent molecules are each partially disordered over two positions and only one is linked to the five-metal core complex by a C—H...O hydrogen bond.


2020 ◽  
Author(s):  
Muhammet Karaman

The coronavirus disease (COVID-19) pandemic is the most important current problem in the world. Many researchers have focused on approved drugs or new drug candidates to combat the pandemic. Structural and nonstructural proteins of SARS-CoV-2 have been detected as targets for prevention of host cell infection or blockade of vital function. The main protease that plays an essential role in the virus life cycle is the optimal target. To design new inhibitors against the enzyme, the catalytic active site and substrate-binding site should be well analyzed. In this study, we generated a pharmacophore model using the cocrystallized pose of an active SARS-CoV-2 main protease inhibitor. According to the model, the inhibitor inhibits the enzyme via three hydrogen bond donors, two hydrogen bond acceptors and two aromatic ring interactions. Moreover, we docked reported active inhibitors of the main protease into the catalytic active site and detected matches between their pharmacophore models. The results showed that two close hydrogen acceptor/donor atom pairs and an aromatic ring are essential for enzyme inhibition.


2018 ◽  
Vol 74 (11) ◽  
pp. 1665-1668
Author(s):  
Vidya Zende ◽  
Tejpalsingh Ramsingh Girase ◽  
Nicolas Chrysochos ◽  
Anant Ramakant Kapdi ◽  
Carola Schulzke

In the cation of the title molecular salt, C18H24N3O+·Cl−, an intramolecular C—H...O hydrogen bond stabilizes the almost coplanar orientation of the aromatic ring of the indane unit and the amide plane. In the crystal, the packing is dominated by intermolecular C—H...Cl hydrogen-bonding interactions that result in the formation of slab-like structures propagating along [010]. The slabs are linked by weak C—H...O interactions, forming layers lying parallel to (100). The methylene carbon atom of the indanyl substituent is disordered over two positions with a refined occupancy ratio of 0.84 (2):0.16 (2). The crystal studied was refined as a twin with matrix [1 0 0.9, 0 \overline{1} 0, 0 0 \overline{1}]; the resulting BASF value is 0.30.


Author(s):  
Neelakandan Devika ◽  
Nandhagopal Raja ◽  
Subbiah Ananthalakshmi ◽  
Bruno Therrien

The cation of the title compound, [Rh(η5-C5Me5)Cl(C13H12ClN3)]Cl, adopts a typical piano-stool geometry. The complex is chiral at the metal and crystallizes as a racemate. Upon coordination, the hydrazinylidenepyridine ligand is non-planar, an angle of 54.42 (7)° being observed between the pyridine ring and the aromatic ring of the [2-(4-chlorophenyl)hydrazin-1-ylidene]ethyl group. In the crystal, a weak interionic N—H...Cl hydrogen bond is observed.


2020 ◽  
Author(s):  
Muhammet Karaman

The coronavirus disease (COVID-19) pandemic is the most important current problem in the world. Many researchers have focused on approved drugs or new drug candidates to combat the pandemic. Structural and nonstructural proteins of SARS-CoV-2 have been detected as targets for prevention of host cell infection or blockade of vital function. The main protease that plays an essential role in the virus life cycle is the optimal target. To design new inhibitors against the enzyme, the catalytic active site and substrate-binding site should be well analyzed. In this study, we generated a pharmacophore model using the cocrystallized pose of an active SARS-CoV-2 main protease inhibitor. According to the model, the inhibitor inhibits the enzyme via three hydrogen bond donors, two hydrogen bond acceptors and two aromatic ring interactions. Moreover, we docked reported active inhibitors of the main protease into the catalytic active site and detected matches between their pharmacophore models. The results showed that two close hydrogen acceptor/donor atom pairs and an aromatic ring are essential for enzyme inhibition.


Sign in / Sign up

Export Citation Format

Share Document